238 U(48 Ca,X γ) 2010Br14

History Author Citation Literature Cutoff Date Full Evaluation Balraj Singh **ENSDF** 28-Feb-2011

Deep-inelastic heavy-ion reactions. Three different experiments.

- 1. $E(^{48}Ca)=330$ MeV provided by the ATLAS accelerator at ANL. Measured E γ , I γ , $\gamma\gamma$ using the Gammasphere array.
- 2. $E(^{48}Ca)=330$ MeV from Legnaro Tandem-ALPI Linac accelerator using PRISMA-CLARA spectrometer. Measured E γ , I γ , $\gamma\gamma$. 3. $^{48}Ca(^{208}Pb,X\gamma)$ at 300 MeV, Legnaro accelerator facility. PRISMA-CLARA array. Plunger method used to measure lifetimes. Comparison with shell-model calculations.

⁴⁹K Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0	$(1/2^+)$		Configuration= $\pi s_{1/2}^{-1}$ state. Configuration= $\pi d_{3/2}^{-1}$ state.
91.7 <i>3</i>	$(3/2^+)$	8 ns 5	Configuration= $\pi d_{3/2}^{-1}$ state.
			$T_{1/2}$: >3 ns from recoil-distance method, <13 ns from $\gamma\gamma$ time distribution of 771-92 $\gamma\gamma$ events (2010Br14).
862.8 <i>3</i>	$(5/2^+)$	2.2 ps 4	T _{1/2} : from recoil-distance method (2010Br14). Effective half-life, includes feeding from higher-lying stated.
1102.9? 8	$(5/2^+)$		Placement of 1011γ is either to 92-keV level as shown in figure 3 of 2010Br14 or to the g.s.
1438.3 <i>4</i>	(7/2+)	>0.35 ps	$T_{1/2}$: from thick-target data where 575 γ appears as a narrow line (2010Br14). The fit to the ratio $I_{after}/[I_{before}+I_{after}]$ gave $T_{1/2}=3.4$ ps 7 for 575.5 γ which could imply $T_{1/2}$ is much shorter than 2.2 ps for the 863-keV state which is populated by 575 γ .
2104.2 5	(7/2-)	>0.35 ps	Configuration= $\pi f_{7/2}$ state. $T_{1/2}$: from thick-target data where 1241 γ appears as a narrow line (2010Br14).

[†] From shell-model predictions (2010Br14). But see also calculations in 2009No01, where 3/2⁺ is g.s. and 1/2⁺ at about 75 keV.

E_{γ}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Comments
91.7 3	51 9	91.7	$(3/2^+)$	0	$(1/2^+)$	I_{γ} : 32 9 in experiment #1.
575.5 2	44 8	1438.3	$(7/2^+)$	862.8	$(5/2^+)$	I_{γ} : 36 5 in experiment #1.
771.1 2	100	862.8	$(5/2^+)$	91.7	$(3/2^+)$,
862.6 8	7 7	862.8	$(5/2^+)$	0	$(1/2^+)$	I_{γ} : 8 4 in experiment #1.
1011.2 8	38 9	1102.9?	$(5/2^+)$	91.7	$(3/2^+)$	Placement of 1011γ is either to 92-keV level as shown in figure 3 of
						2010Br14 or to the g.s.
						I_{γ} : 36 8 in experiment #1.
1241.4 <i>4</i>	33 9	2104.2	$(7/2^{-})$	862.8	$(5/2^+)$	I_{γ} : 35 6 in experiment #1.

[†] From experiment #2. Values from experiment #1 are in comments.

##