⁵⁰K β⁻n decay 1983RaZR,1982Ca04,1998Ba80

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	T. W. Burrows ^a	NDS 109,1879 (2008)	14-Jul-2008

Parent: ⁵⁰K: E=0.0; $J^{\pi}=0^-$; $T_{1/2}=472$ ms 4; $Q(\beta^-n)=7.87\times10^3$ 28; $\%\beta^-n$ decay=29 3 ⁵⁰K-E, $T_{1/2}$: From the ⁵⁰K Adopted Levels in 1995Bu09.

⁵⁰K-J^π: 0⁻,1,2,3,4⁻ from log *ft*=7.0 (log *f*^{1*u*}*t*=9.6) to 2⁺ and 0⁻,1,2⁻ from log *ft*=5.9 (log *f*^{1*u*}*t*=8.6) to 0⁺. 1998Ba80 confirm J^{π} =0⁻ suggested by 1991Wa23 based on the systematics and theory of first-forbidden ΔJ=0 log *ft*'s in the A=34-44 region (1988Wa30). 1995Bu09 adopted (0⁻,1,2⁻) since a direct and accurate measurement of feeding to ⁵⁰Ca g.s. was required to confirm the suggestion of 1991Wa23.

 50 K-Q(β^{-} n): from 2003Au03.

 ${}^{50}\text{K}-\%\beta^-\text{n}$ decay: from 1982Ca04.

1983RaZR,1982Ca04: measured n's, γ 's, and γ n coincidences.

1998Ba80: potassium isotopes produced by bombarding 50 g/cm² UC² target with protons; mass separated in the ISOLDE magnet. Measured $\beta^{-\prime}$'s (thin cylindrical plastic scin; near 4π geometry), γ 's (Ge), and β - γ coin and n's (tof; 12 small NE102A scin for low energy; large curved plastic scin for high energy).

Others: see 1995Bu23.

Coincidences are from 1983RaZR.

⁴⁹Ca Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	3/2-	8.718 min 6	$\%\beta^{-}=100$
2023.0 5 3356.8 10 3585.0 [‡] 8 3859.9 9 4072.2 10	1/2 ⁻ (9/2 ⁺) 5/2 ⁻ (1/2 ⁻ ,3/2 ⁻) 3/2 ⁻		1 _{1/2} , <i>np</i> . nom me Adopted Levels.

[†] From least-squares fit to $E\gamma$'s (evaluator), except as noted.

[‡] From the Adopted Levels.

$\gamma(^{49}\text{Ca})$

I γ normalization: from $\Sigma I(\gamma + ce)(to g.s.) = 100 - \Sigma I(n)(to g.s.)$.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [‡]	α@	Comments
2023.0 5	100	2023.0	1/2-	0.0 3/2-	(M1,E2)	0.000314 4	$\alpha(K)=1.82\times10^{-5} \ 9; \ \alpha(L)=1.56\times10^{-6} \ 7; \\ \alpha(M)=1.85\times10^{-7} \ 9; \ \alpha(N+)=0.00029 \ 4 \\ \alpha(N)=1.05\times10^{-8} \ 5; \ \alpha(IPF)=0.00029 \ 4 $
3356.7 <i>10</i> 3859.7 9	5.6 <i>12</i> 7.9 <i>13</i>	3356.8 3859.9	$(9/2^+)$ $(1/2^-, 3/2^-)$	$\begin{array}{ccc} 0.0 & 3/2^- \\ 0.0 & 3/2^- \end{array}$	[E3]		
4072.0 10	7.3 20	4072.2	3/2-	0.0 3/2-	(M1,E2)	0.001137 <i>16</i>	$\alpha(\mathbf{K}) = 6.02 \times 10^{-6} \ 13; \ \alpha(\mathbf{L}) = 5.14 \times 10^{-7} \ 11; \\ \alpha(\mathbf{M}) = 6.11 \times 10^{-8} \ 13; \ \alpha(\mathbf{N}+) = 0.00113 \\ 7 \\ \alpha(\mathbf{N}) = 3.48 \times 10^{-9} \ 8; \ \alpha(\mathbf{IPF}) = 0.00113 \ 7$

[†] From 1998Ba80.

[‡] From the Adopted Gammas.

[#] For absolute intensity per 100 decays, multiply by 0.050 11.

${}^{50}{\rm K}\,\beta^-{\rm n}$ decay 1983RaZR,1982Ca04,1998Ba80 (continued)

γ (⁴⁹Ca) (continued)

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Delayed Neutrons (⁴⁹Ca)

Particle normalization: from 1982Ca04.

$E(n)^{\dagger}$	E(⁴⁹ Ca)	$I(n)^{\ddagger C}$	$E(^{50}Ca)^{\#}$	Comments
151 5	0.0	9.2 51	6510	I(n)(rel.)=38 21.
446 [@] 25	3585.0	1.0 3	10430	I(n)(rel.)=4 l.
500 10	2023.0	11.6 17	8800	$I(n)(rel.) = 48 \ 6.$
642 [@] 35	4072.2	1.21 26	11050	I(n)(rel.)=5 1.
660 [@] 35	0.0	1.21 26	7030	I(n)(rel.)=5 1.
695 <i>23</i>	3356.8	1.31 24	10430	I(n)(rel.) = 5.4 9.
844 [@] 45	2023.0	1.9 7	9230	I(n)(rel.)=8 3.
890 [@] 45	0.0	0.97 25	7260	I(n)(rel.) = 4 l.
931 [@] 40	0.0	1.2 5	7300	I(n)(rel.)=5 2.
978 <i>36</i>	4072.2	1.79 32	11470	I(n)(rel.)=7.4 12.
1102 [@] 60	3585.0	1.5 5	11050	I(n)(rel.)=6 2.
1246 34	0.0	4.4 15	7610	$I(n)(rel.) = 18 \ 6.$
1300 40	3356.8	0.71 8	11050 ^a	$I(n)(rel.)=2.9 \ 3.$
1428 <mark>6</mark> 30	2023.0	0.75 9	9770	I(n)(rel.)=3.1 3.
1606 [@] 85	0.0	2.4 10	7990	I(n)(rel.)=10 4.
1741 [@] 90	3585.0	1.7 5	11470	I(n)(rel.)=7 2.
1845 [@] 95	0.0	2.7 12	8240	I(n)(rel.)=11 5.
2030 & 60	0.0	4.9 5	8430 ^a	$I(n)(rel.)=20 \ I.$
2133 67	2023.0	2.4 4	10540	I(n)(rel.)=10.1 13.
2260 <mark>&</mark> 70	0.0	2.3 4	8660 ^a	I(n)(rel.)=10 I.
2464 54	0.0	24.2 12	8800	$I(n)(rel.) = 100 \ 4.$
2827 74	0.0	15.7 16	9230	I(n)(rel.) = 65 4.
3340 96	0.0	6.5 7	9770	I(n)(rel.)=27.2.
3.85×10 ³ 11	0.0	0.48 6	10430	I(n)(rel.)=2.0 2.
4.01×10 ⁵ 12	0.0	1.94 27	10540	I(n)(rel.)=8.0 9.
4.60×10^{3} 12	0.0	0.48 6	11050	I(n)(rel.)=2.0 2.
5.01×10 ³ 12	0.0	0.48 6	11470	I(n)(rel.)=2.0 2.

[†] Weighted average (internal) from 1983RaZR and 1998Ba80, except as noted.

^{\pm} Converted by evaluator from relative intensities to intensities per 100 decays by the β^- n decay mode. Normalization factor=0.242 *19.*# From 1998Ba80, except as noted.

[@] From 1998Ba80. Not reported by 1983RaZR.

& From 1983RaZR. Not reported by 1998Ba80. I(n) renormalized by evaluator to I(n)(2464)=100.

^{*a*} From the ⁵⁰Ca Adopted Levels in 1995Bu09.

^b Weighted average (external) from 1983RaZR and 1998Ba80.

^c For absolute intensity per 100 decays, multiply by 0.29 3.

 ${}^{49}_{20}\text{Ca}_{29}\text{-}3$

50 K β^- n decay 1983RaZR,1982Ca04,1998Ba80

 γ Intensities: $I_{(\gamma+ce)}$ per 100 parent decays I(n) Intensities: I(n) per 100 parent decays

Legend

⁵⁰K β⁻n decay 1983RaZR,1982Ca04,1998Ba80

Decay Scheme (continued)

 γ Intensities: $I_{(\gamma+ce)}$ per 100 parent decays I(n) Intensities: I(n) per 100 parent decays

