Adopted Levels, Gammas

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 179, 1 (2022)	30-Nov-2021

 $Q(\beta^{-})=-1657\ 7;\ S(n)=10542.3\ 10;\ S(p)=6829.4\ 10;\ Q(\alpha)=-9086.9\ 20$ 2021Wa16 $S(2n)=23544.7\ 10,\ S(2p)=17294.3\ 12\ (2021Wa16).$

The level scheme and placements of γ transitions are from $\gamma\gamma$ -coin data in ²⁷Al(²⁷Al,3n3p γ) (1991Ca30), ¹⁰B(⁴⁰Ca,2p γ) (1994Ca04), and ²⁴Mg(²⁸Si,n3p γ) (2002Br42).

⁴⁸V Levels

Band assignments are from $(^{24}Mg,n3p\gamma)$ (2002Br42), unless otherwise noted.

Cross Reference (XREF) Flags

		$ \begin{array}{c} A & {}^{48}{\rm Cr} \\ B & {}^{10}{\rm B}({}^{4} \\ {\rm C} & {}^{27}{\rm Al}(\\ {\rm D} & {}^{28}{\rm Si}({}^{2} \\ {\rm E} & {}^{34}{\rm S}({}^{14} \\ {\rm F} & {}^{45}{\rm Sc}(\end{array}) $	ε decay (21.56 h) 0 Ca,2pγ), 40 Ca(10 B,2pγ) 27 Al,3n3pγ), 40 Ca(14 N,2n4g 24 Mg,n3pγ), 24 Mg(28 Si,n3p 6 O,pnγ) α,nγ)	$ \begin{array}{ccccc} {\sf G} & {}^{46}{\rm Ti}({}^{3}{\rm He},{\rm p}) & {\sf M} & {}^{48}{\rm Ti}({\rm p},{\rm n}) \\ {\sf H} & {}^{46}{\rm Ti}({}^{3}{\rm He},{\rm p}\gamma) & {\sf N} & {}^{48}{\rm Ti}({\rm p},{\rm n}) \ {\rm IAS} \\ {}^{5\gamma}{\sf y} & {\sf I} & {}^{46}{\rm Ti}(\alpha,{\rm pn}\gamma) & {\sf O} & {}^{48}{\rm Ti}({\rm p},{\rm n}\gamma) \\ {}^{\gamma}{\sf y} & {\sf J} & {}^{47}{\rm Ti}({\rm p},\gamma) & {\sf P} & {}^{48}{\rm Ti}({}^{3}{\rm He},{\rm t}) \\ {\sf K} & {}^{47}{\rm Ti}({\rm p},\gamma) : {\rm resonance} & {\sf Q} & {}^{50}{\rm Cr}({\rm p},{}^{3}{\rm He}) \\ {\sf L} & {}^{47}{\rm Ti}({}^{3}{\rm He},{\rm d}) & {\sf R} & {}^{50}{\rm Cr}({\rm d},\alpha) \end{array} $				
E(level) [†]	J ^{π &}	T _{1/2} @	XREF	Comments				
0.0 ^a	4+	15.974 d 3	ABCDEFGHIJ LMNOP R					
308.29 ^b 6	2+	7.11 ns 4	AB DEFGHIJ LM OP R	$\mu=+0.44\ 2\ (1987Ra19,2019StZV)$ J ^π : spin=2 from γ(θ) in (p,nγ) (1973SaZF); L(³ He,t)=L(³ He,p)=2 from 0 ⁺ . T _{1/2} : weighted average of 7.09 ns 7 (1967Au02), 7.21 ns 21 (1971Bo13), and 7.07 ns 14 (1969PaZT) from ⁴⁸ Cr ε decay, 7.12 ns 4 (1973SaZF) and 7.21 ns 28 (1963Ba22) from (p,nγ), μ: from differential perturbed angular correlations (⁵¹ V standard). Other: +0.28 10 from integral perturbed angular correlations of gamma following nuclear reactions with ⁵¹ V standard (1978Ta17); 1.63 10 from γ-radiation anisotropy in nuclear orientation (1966Ca04). See also 2019StZV compilation.				
420.69 ^b 8	1+	<135 ps	ABCDEFGHI 1M OP R	XREF: l(428). J^{π} : spin=1 from $\gamma(\theta)$ in (p,n γ); L(d, α)=L(³ He,p)=0+2 from 0 ⁺ ; strong ε feeding (log <i>ft</i> =4.3) from 0 ⁺ parent. T _{1/2} : from $\gamma\gamma\gamma$ (t) in (¹⁴ N,2n4p γ) (2005Ma81). Others: <1 ns from $\gamma\gamma$ (t) in (p,n γ) (1973SaYL) and DSAM in (²⁴ Mg,n3p γ) (2002Br42).				
427.89 ^c 8	5+	6.4 ps <i>10</i>	BCDEF J 1 O	XREF: l(428). J ^{π} : spin=5 from $\gamma(\theta)$ in (p,n γ) (1973SaZF) and (¹⁰ B,2p γ) (1973Hu08); parity from $\gamma(\theta$,pol) in (p,n γ) (1976Ri01).				

⁴⁸V Levels (continued)

E(level) [†]	Jπ&	T _{1/2} @	XREF		Comments
					T _{1/2} : weighted average of 8.3 ps 25 from (¹⁶ O,pn γ) (1974Ha66) and 6.1 ps 10 from in (α ,n γ) (1975Br07), using RDM. Other: <14 ps from RDM in (¹⁰ B,2p γ) (1973Hu08).
518.65 ^d 9	1-	2.72 ns 6	B DEF IJ LM	IOR	J ^{π} : spin=1 from $\gamma(\theta)$ in (¹⁰ B,2p γ) and (p,n γ); 537.2 γ E2(+M3) from 3 ⁻ . Other: L(³ He,d)=3 from 5/2 ⁻ gives π =+ for a group at 520 <i>15</i> . T _{1/2} : from $\gamma(t)$ in (p,n γ) (1973SaZF). Other: 0.7 ns <t<sub>1/2<6.9</t<sub>
612 26b 8	<i>4</i> +	15 0 mg 8	P DEF a 1 1	0.0. m	ns from RDM in (10 B,2p γ) (1973Hu08).
015.50 8	+	15.0 ps 8	B DEFY J I	OF 1	J^{π} : spin=4 from $\gamma(\theta)$ in (¹⁶ O,pn γ) and (p,n γ); 613.4 γ M1+E2 to 4 ⁺ .
627.21 ^{<i>a</i>} 13	6+	76 ps 6	BCDEFg 1	OP r	T _{1/2} : from RDM in (α,nγ) (1975Br07). XREF: g(622)l(616)r(622). J ^π : spin=6 from γ(θ) in (p,nγ) (1973SaZF); 627.3γ E2 to 4 ⁺ . T _{1/2} : weighted average of 77 ps 7 from γγγ(t) in (²⁷ Al,3n3pγ), 73 ps 7 from RDM in (¹⁶ O,pnγ), and 76.9 ps 62 from RDM in (α,nγ). Other: 90 ps 42 from RDM in (⁴⁰ Ca,2pγ).
745.01 ^d 8	2-	17.3 ps 18	B DEF IJ M	I OP r	XREF: r(756).
					J ^{π} : spin=2 from $\gamma(\theta)$ in (¹⁶ O,pn γ) and (p,n γ); 310.8 γ M1(+E2) from 3 ⁻ .
					$T_{1/2}$: from RDM in (¹⁶ O,pn γ). Other: 2.8 ps< $T_{1/2}$ <29 ps from RDM in (⁴⁰ Ca,2p γ).
764.97 ^b 7	3+	≤2.6 ps	DF J1	Op r	XREF: $l(772)p(767)r(756)$. J ^{π} : spin=3 from $\gamma(\theta)$ in (p,n γ); 456.7 γ M1+E2 to 2 ⁺ .
775.9 5	3,5		B E 1	рR	$T_{1/2}$: from RDM in (α ,n γ) (19/5Br0/). XREF: 1(772)p(767). I^{π} : stretched D to 4^+
1055.83 ^d 10	3-	4.5 ps <i>13</i>	B DEF IJ L	OP R	XREF: L(1064)R(1071). J^{π} : from $\gamma(\theta, \text{pol})$ and $\gamma(\theta)$ in (p,n γ); L(³ He,t)=3 from 0 ⁺ . Other: L(³ He,d)=3 from 5/2 ⁻ gives π =+ for a group at 1064 15.
					$T_{1/2}$: weighted average of 4.4 ps <i>18</i> from (¹⁶ O,pn γ) and 4.6 ps <i>13</i> from (α ,n γ), using RDM.
1099.17 ^e 14	4-	4.5 ps 4	BCDEF IJ	OP r	XREF: r(1114). J^{π} : from $\gamma(\theta)$ (1973SaZF) and $\gamma(\theta, \text{pol})$ (1976Mo26) in (p,n γ). $T_{1/2}$: from RDM in ($\alpha, n\gamma$). Other: 4.2 ps <i>10</i> from RDM in
1120.5 15	(2,3,4)+		GJL	r	(**O,pny). XREF: L(1100)r(1114).
1254.48 ^c 22	7+	0.41 ps <i>10</i>	BCDE G	PR	$J^*: 811.0\gamma$ to 2', 1123.0 γ to 4'; L("He,d)=3 from 5/2 . XREF: R(1266).
		1			J ^{π} : spin=7 from $\gamma(\theta)$ in (¹⁶ O,pn γ) (1974Ta15); L(d, α)=6 from 0 ⁺ .
					T _{1/2} : others: <3.5 ps from RDM in (¹⁶ O,pn γ), <6.9 ps from RDM in (¹⁰ B,2p γ).
1264.53 ^b 16	5+	≤1.9 ps	DEF	OP	J ^π : spin=5 from $\gamma(\theta)$ in (p,nγ); 651.2γ M1+E2 to 4 ⁺ . T _{1/2} : from RDM in (α,nγ) (1975Br07).
1326 10				PR	E(level): weighted average of 1333 10 from (³ He,t) and 1318 10 from (d,α) .
1521.41 10	2+	≤3.0 ps	F L	OP R	J ^π : spin=2 from $\gamma(\theta)$ in (p,nγ); L(³ He,d)=1 from 5/2 ⁻ . T _{1/2} : from RDM in (α,nγ) (1975Br07).
1557.58 ^d 13	4-	0.97 ps 28	B DEF I	OP R	J ^{π} : spin=4 from $\gamma(\theta)$ in (p,n γ) and (¹⁶ O,pn γ); 812.4 γ E2 to 2 ⁻ .

⁴⁸V Levels (continued)

E(level) [†]	Jπ&	$T_{1/2}^{(a)}$	XREF		Comments
1685.58 ^e 20	5(-)	0.60 ps 7	BCDEFg I	OP	T _{1/2} : others: <2.8 ps from RDM in (α,nγ), <6.9 ps from RDM in (¹⁶ O,pnγ). XREF: g(1687). J ^π : spin=5 from γ(θ) in (¹⁶ O,pnγ); member of K^{π} =4 ⁻ rotational band. T _{1/2} : others: <3.0 ps from RDM in (α,nγ), <3.5 ps from
1691.5 <i>19</i>	(2+,3-)		gЈ	R	RDM in (10 O,pn γ). XREF: g(1687)R(1698).
1728 10	5+,6+,7+		g	Ρr	J [*] : 11/3.07 to 1 [*] , 16917 to 4 [*] . XREF: g(1736)r(1743). E(level): from (³ He,t). Others: 1736 15 from (³ He,p) and 1743 10 from (d, α) could be a doublet. I [#] : L(³ He,t)=6 from 0 ⁺
1750.2 ^b 7	(6 ⁺)		D g	Ρr	XREF: g(1736)r(1743).
1764 10			1	PR	J^{π} : 1322 γ to 5 ⁺ ; band assignment.
170 - 10			1	IK	E(level): weighted average of 1767 <i>10</i> from (³ He,t) and 1760 <i>10</i> from (d,α) . I ^{π} : L (3He D)=1 for 1779 doublet
1780.98 14	3+		1	OP R	XREF: 1(1779)R(1793).
1998.45 <i>17</i>	23-		L	OR	J^{π} : spin=3 from $\gamma(\theta)$ in (p,n γ); L(³ He,t)=4 from 0 ⁺ . XREF: R(2015).
)- _				J^{π} : L(³ He,d)=0 from 5/2 ⁻ .
2062.16 ^d 19	5 ⁽⁻⁾	0.76 ps 21	B DE I	R	XREF: R(2077). J^{π} : spin=5 from $\gamma(\theta)$ in (¹⁶ O,pn γ); 1006.2 γ (E2) to 3 ⁻ . $T_{1/2}$: from DSAM in (²⁴ Mg,n3p γ).
2096.9 [‡] <i>3</i>			g 1	OP	XREF: g(2112)l(2111). E(level): other: 2098 <i>10</i> from (³ He,t). J^{π} : L(³ He,d)=1 for 2111 doublet.
2118.5 [‡] 5	1+,2+,3+		g 1	OP R	XREF: g(2112)l(2111)R(2135). E(level): others: 2120 <i>10</i> from (He,t), 2135 <i>10</i> from (d, α). J ^{π} : L(³ He,t)=2 from 0 ⁺ .
2179.5 [‡] 5	1+		L	0p	XREF: p(2187).
					E(level): other: 2178 15 from (³ He,d). J^{π} : L(³ He,d)=1 from 5/2 ⁻ and L(³ He,t)=0 from 0 ⁺ . See comments for E(Level) of the 2196 level.
2196 4	(3,4) ⁻		J	pr	XREF: $p(2187)r(2202)$. E(level): In (³ He,t), 1975Ma13 give L=3 from 0 ⁺ for a group at E=2187 <i>10</i> and 2016Ga23 give a contradicting L=0 for a group at E=2186 <i>10</i> , which could indicate a doublet, also considering that the 2196 level from (p, γ) with 1143 γ to 3 ⁻ and 2196 γ to 4 ⁺ is consistent with L(³ He,t)=3 but not 0 while a level at E=2178 <i>15</i> from (³ He,d) with L(³ He,d)=1 from 5/2 ⁻ (1968Do06) is consistent with L(³ He,t)=0 but not 3. Also note that there is a 2179.5 level from (p,n γ). Therefore, the evaluator has assigned L(³ He,d)=1 (1968Do06) and L(³ He,t)=0 (2016Ga23) to the same level around 2180 and L(³ He,t)=0 (1975Ma13) to the 2196. J ^π : L(³ He,t)=3 from 0 ⁺ ; 2196.0 γ to 4 ⁺ , possible 1143.0 γ to 2 ⁻ See E(1) and the same term
2231.49 ^a 24	8+	0.215 ps 35	BCDE		J^{π} : 977.2 γ M1+E2, Δ J=1 to 7 ⁺ ; 394.8 γ from J=9.
2258.1 [‡] 9	1+,2+,3+,4+	-	L	OP R	XREF: L(2247)R(2270).

⁴⁸V Levels (continued)

E(level) [†]	Jπ&	$T_{1/2}^{(a)}$	XREF		Comments
					E(level): others: 2247 15 from (³ He,d), 2258 10 from (³ He,t), and 2270 10 from (d, α). J ^{π} : L(³ He,d)=1+3 from 5/2 ⁻ .
2289.0 [‡] 10	1+		GH	OP R	XREF: R(2305).
					E(level): others: 2289 6 from $(p,n\gamma)$, 2292 15 from (³ He,p), 2287 10 from (³ He,t), and 2305 10 from (d,α) . $I^{\pi}: I_{\alpha}({}^{3}\text{He},p)=0+2$ from $0^{+}: I_{\alpha}({}^{3}\text{He},t)=0$ from 0^{+}
2321.7 [‡] 12				On R	XREF: p(2324)R(2305)
$2333.1^{\ddagger} 6$				Op r	XREF: $p(2324)r(2342)$.
2338.1 21	(3,4+)		J	r	XREF: $r(2342)$. J ^{π} : 2031 γ to 2 ⁺ , 1724.5 γ to 4 ⁺ ; possible 1236 γ to 4 ⁻ .
2372.7 [‡] 6				Ор	XREF: p(2385).
2391.2 [‡] 7				Op r	XREF: p(2385)r(2390).
2398.31 ^e 22	6-	0.222 ps 21	BCDE I	r	XREF: r(2390). J ^π : 1771.2γ D, Δ J=0 to 6 ⁺ and 712.4γ D, Δ J=1 to J=5 give spin=6; M2 for 1299.3γ to 4 ⁻ ruled out by RUL.
2408.2 [‡] 7	1+		GH L	OP R	XREF: R(2415).
					E(level): others: 2409 15 from (³ He,p), 2408 5 from (³ He,p γ), 2411 15 from (³ He,d), 2415 10 from (d, α).
2447 4 17	$(2^+ 3^-)$		a 11	n	J^{π} : L(³ He,p)=0+2 from 0 ⁺ .
2447.4 17	(2,3)		y J I	þ	J^{π} : 1926 γ to 1 ⁻ , 1837 γ to 4 ⁺ . See also comments for 2458 level.
2458.2 [‡] 12			g 1	Op	XREF: g(2464)l(2455)p(2456).
					J^{π} : L(³ He,d)=1+3 from 5/2 ⁻ for a group at 2455 15,
+					$L({}^{3}He,p)=2$ from 0 ⁺ for a group at 2464 15.
2471.8+ 12	(2,3)-		J	OP R	E(level): others: 2473 10 from (³ He,t), 2471 10 from (d, α), 2471 3 from (p, γ).
2495.3 19	$(3^+, 4, 5^-)$		J	R	J^{*} : L(°He,t)=3 from 0°; 1955 γ to 1°, 2159 γ to 2°. J^{π} : 1439 γ to 3 ⁻ , 2072 γ to 5 ⁺ .
2574.8 [‡] 10			g 1	Op	XREF: g(2578)l(2568)p(2580).
					J^{π} : L(³ He,d)=1(+3) from 5/2 ⁻ for a group at 2568 15.
2579.1 [‡] 12			g 1	Op	XREF: g(2578)l(2568)p(2580).
2586 (12				0	J^{n} : L(³ He,d)=1(+3) from 5/2 ⁻ for a group at 2568 15.
$2586.6^{+} 12$	$(2^+ 2 4^+)$		9	Op r	$\mathbf{XREF: } g(2578)p(2580)r(2595).$
2004.7 • 14	(2,,5,4)		JI	ор г	I^{π} : 2300y to 2 ⁺ , possible 1986.0y to 4 ⁺ : L(³ He t)=2 from 0 ⁺
					for a group at 2610 10. See comments for 2607.4 level.
2607.4 [‡] 14	(1^{+})		1	Op R	XREF: l(2605)p(2610)R(2620).
					J^{π} : L(³ He,t)=2 from 1975Ma13 for a group at 2610 <i>10</i> and 0 from 2016Ga23 for a group at 2611 <i>10</i> indicate a doublet, with the former (L=2) probably corresponding to the 2604.7 level and the latter (L=0) corresponding to the 2607.4 level in (p px)
2626.3 ^c 3	9+	0.56 ps 8	BCDE		J^{π} : spin=9 from $\gamma(\theta)$ in (¹⁶ O,pn γ); 1371.7 γ E2(+M3) to 7 ⁺ .
,					$T_{1/2}$: other: <1.2 ps from DSAM in (¹⁶ O,pn γ).
2703.2 ^b 7	(7^{+})		D		J^{π} : 953 γ to (6 ⁺); band assignment.
2715.7 [‡] 15	4-,5-,6-		G	OP R	XREF: G(2694)R(2707).
					E(level): others: 2694 15 from (³ He,p), 2715 10 from (³ He,t), 2707 10 from (d,α) .
2760 10				Р	J ^{\cdot} : L($^{\circ}$ He,t)=5 from 0 ^{\cdot} for a group at 2/15 <i>10</i> .
_,				-	

⁴⁸V Levels (continued)

E(level) [†]	J π &	$T_{1/2}^{(a)}$	XREF	Comments
2775 10	1+,2+,3+,4+		G L P	 R XREF: G(2783)L(2786). E(level): from (³He,t). Other: 2783 15 from (³He,p), 2786 15 from (³He,d), 2779 10 from (d,α). J^π: L(³He,d)=1 from 5/2⁻.
2779.14 ^d 25	(6 ⁻)	0.194 ps 28	DE I	J ^π : 1221.1γ (E2), Δ J=(2) to 4 ⁻ , 717.1γ (D), Δ J=(1) to 5 ⁽⁻⁾ .
2793.0 [‡] 16	(3,4) ⁻		g J OP	R XREF: g(2783)R(2799). E(level): others: 2793 10 from (³ He,t), 2799 10 from (d, α). J ^{π} : 2 ⁻ ,3 ⁻ ,4 ⁻ from L(³ He,t)=3 for a group at 2793 10 (1975Ma13) from 0 ⁺ ; 2789 γ to 4 ⁺ . Note that L(³ He,t)=0 from 2016Ga23 for a group at 2792 10 is inconsistent, which could indicate a separate level around this energy.
2823.1 [‡] <i>12</i>	(4 ⁻)		G J OP	R XREF: O(?)R(2837). E(level): others: 2828 15 from (³ He,p), 2817 10 from (³ He,t), 2837 10 from (d,α). J ^π : L(³ He,t)=(5) from 0 ⁺ ; 2055γ to 3 ⁺ , 2825γ to 4 ⁺ .
2885 10			Р	R E(level): weighted average of 2893 10 from (³ He,t) and 2876 10 from (d,α) .
2915.2 [‡] 18 2925 10			0	E(level): from $(p,n\gamma)$. R XREF: 1(2937). E(level): from (d,α) . $I^{\pi_{1}} \downarrow I_{\alpha}^{\beta}$ Ha d)=1(+3) from a group at 2027 15
2954 10			1 P	R XREF: 1(2937). E(level): weighted average of 2949 10 from (³ He,t) and 2959 10 from (d, α). I^{π} : L(³ He d)=1(+3) from a group at 2937 15
2969.2 [‡] 18			0	J : $L(116, u) = 1(+3)$ from a group at 2337 13.
2985 <i>10</i> 3012 <i>3</i>	(1+,2,3,4+)		J 1	R E(level): from (d,α). XREF: 1(3031). $J^{π}$: 2704γ to 2 ⁺ , possible 2250γ to 3 ⁺ .
3022.6 [‡] 20	0+		GH 1 NOPQ	 T=2 XREF: l(3031). E(level): others: 3018 15 from (³He,p), 3020 30 from (p,³He). J^π: (³He,p)=L((³He,t)=L(p,³He)=0 from 0⁺; identified as IAS of ⁴⁸Ti ground state. 1968Do06 in (³He,d) report the IAS at 3043 15, which is weakly excited as mentioned by the authors, while in their earlier study in (³He,p) (1968Do03), the strongly excited IAS is identified at 3018 15, which is consistent with E(IAS)=3022 15 (1972Be38), 3021 (1975Ma13) and 3018 10 (2016Ga23) in (³He,t).
3048.7 [‡] 20			L 0	R E(level): others: 3043 15 from (³ He,d), 3043 10 from (d, α). J ^{π} : 1968Do06 in (³ He,d) report the state at 3043 15 as the IAS of ⁴⁸ Ti ground state, but also state that the (³ He,d) transition to this state is weak and non-stripping. See comments for 3022.6 level.
3074 3	1+,2+,3+,4+		g J L P	XREF: g(3085). J^{π} : L(³ He,d)=1 from 5/2 ⁻ for a group at 3075 15.
3101 10			g P	R XREF: g(3085).
3168 <i>15</i> 3174.5 ^e 3	1 ⁺ ,2 ⁺ ,3 ⁺ ,4 ⁺ (7 ⁻)	0.139 ps 14	L BCDE I	E(level): from (d, α). Other: 5105 15 from ("He,t). J ^{π} : L(³ He,d)=1 from 5/2 ⁻ . J ^{π} : 775.5 γ D, Δ J=1 to 6 ⁻ ; member of K^{π} =4 ⁻ rotational band; spin=7 suggested by 775.5 $\gamma(\theta)$ in (¹⁶ O,pn γ).

E(level) [†]	Jπ&	T _{1/2} @		XRE	F		Comments
3200.5? [‡] 25						OP	XREF: P(3198).
							E(level): other: 3198 15 from $({}^{3}\text{He,t})$.
3210.2 ^b 5	(8 ⁺)		D				J^{π} : 584 γ to 9 ⁺ , possible 1459 γ to (6 ⁺); band assignment.
3243.4 22	$(2)^{+}$			J	L	Р	XREF: P(3266).
							J^{π} : 3243 γ to 4 ⁺ , 2725 γ to 1 ⁻ ; L(³ He,d)=1 from 5/2 ⁻ .
3294 15	$1^+, 2^+, 3^+, 4^+$				L	р	XREF: p(3310).
							J^{π} : L(³ He,d)=1 from 5/2 ⁻ .
3322 15	$1^+, 2^+, 3^+, 4^+$				L	р	XREF: p(3310).
							J^{π} : L(³ He,d)=1 from 5/2 ⁻ .
3382 10	1+				L	Р	E(level): weighted average of 3371 15 from (³ He,d) and 3387
							$10 \text{ from } (^{3}\text{He,t}).$
							J^{π} : L(³ He,d)=1 from 5/2 ⁻ ; L(³ He,t)=0 from 0 ⁺ .
3423.3 ^d 3	(7 ⁻)	0.132 ps 28	DE	I			J^{π} : 1026.1 γ to 6 ⁻ , 1362.0 γ to 5 ⁽⁻⁾ ; band assignment.
3451 15	$1^+, 2^+, 3^+, 4^+$				L	Р	E(level): weighted average of 3440 15 from (³ He,d) and 3461
							$15 \text{ from } (^{3}\text{He,t}).$
							J^{π} : L(³ He,d)=1 from 5/2 ⁻ .
3507 15	$1^+, 2^+, 3^+, 4^+$				L	Ρ	E(level): weighted average of 3523 15 from (³ He,d) and 3490
							$15 \text{ from } (^{3}\text{He,t}).$
							J^{π} : L(³ He,d)=1 from 5/2 ⁻ .
3565 <i>3</i>	$(3,4)^+$			J	L	Р	XREF: P(3557).
							J^{π} : L(³ He,d)=1 from 5/2 ⁻ ; 3137 γ to 5 ⁺ .
3633 15						Р	
3660 15					_	Р	
3702.6	1+			GH	L		XREF: L(3693).
2726 15	1+ 2+ 2+ 4+					-	J^{π} : L(³ He,p)=0+2 from 0 ⁺ .
3736 15	1,2,3,4,				L	Р	XREF: $P(3/22)$.
2806 15	1+ 2+ 2+ 4+			~		P	$J^{*}: L(^{-}He, d) = 1$ from $5/2$.
5800 15	1,2,3,4			G	L	P	E(level): weighted average of 5801 15 from (* He,u) and 5810
							$13 \text{ HOIII} (^{-}\text{He}, l).$
2966 5	1+			CII		P	$J^{*}: L(^{2}He, u) = 1$ from $J/2$. $I^{\pi}_{*}: L(^{3}He, u) = 0 + 2$ from $0^{+}_{*}: L(^{3}He, t) = 0$ from 0^{+}_{*}
3800 J 2045 10	1^{+} 0 ⁺ 1 ⁺			GH		P D	$J^{*}: L(^{*}He, p)=0+2$ from $0^{+}: L(^{*}He, t)=0$ from $0^{+}: I^{*}$
3943 10 3081 0 ^e 3	(8^{-})	0.152 ps 21	PCDE	т		P	J: $L(\Pi e, l)=0$ [10][10]. I^{π} : $R(6.4a)$ D: $AI=1$ to (7^{-}) : band assignment
1024 15	$(0)^+$	0.152 ps 21	DCDE	1	тм	р	J . 800.47 D, $\Delta J = 1$ to (7), band assignment. E(level): weighted every of 4017 15 from (³ He d) and 4020
4024 15	(2)				LN	r	$15 \text{ from } ({}^{3}\text{He t})$
							15 from (11c,t). $17 \cdot 1 (^{3}\text{He d}) = 3 \text{ from } 5/2^{-1} \cdot 1 \text{ AS of } ^{48}\text{Ti } 0.83 2^{+} \text{ level}$
1070 Af 1	(0-)	0.007 00	-				J = L(110, 0) - 5 110111 5/2 , 1AS 01 = 11 905, 2 10001.
40/3.47 4	(8)	0.097 ps 28	D				J^{n} : 898.9 γ to (7), 1676 γ to 6; band assignment.
4086 15	$1^{+}, 2^{+}, 3^{+}, 4^{+}$		DE	-	L		J^{n} : $L({}^{\circ}He,d)=1$ from $5/2$.
4130.1. 5	(10^{-1})		DE	1			AREF. I(?). I^{π} : 1523 5a; to 0^+ 1018 5a; to 8^+ ; hand assignment
4181 10	$0^{+} 1^{+}$					Р	\mathbf{J} . 1525.5 \mathbf{y} to \mathbf{y} , 1516.5 \mathbf{y} to 0 , band assignment.
4201 10	$(0^+, 1^+)$					P	
4245 10	$0^+, 1^+$					P	
4306.8 ^c 4	(11^{+})	0.36 ps 4	BCDE				J^{π} : 1680.4 γ to 9 ⁺ ; band assignment.
4360.6 ^d 5	(8 ⁻)	0.083 ps 28	D				J^{π} : 937.4 γ to (7 ⁻), 1581.3 γ to (6 ⁻): band assignment.
4368.3 ^b 8	(9 ⁺)	r~ -5	- D				J^{π} : 1158 γ to (8 ⁺): band assignment
4395.8 ^e 3	(9 ⁻)	0.90 ps 14	BCD	т			J^{π} : 414.5 γ D. $\Lambda J=1$ to (8 ⁻); band assignment.
4456 10	$0^{+}.1^{+}$	F or 1		-		Р	J^{π} : L(³ He,t)=0 from 0 ⁺ .
4554 10	$0^+.1^+$					- P	J^{π} : L(³ He,t)=0 from 0 ⁺ .
4581 0 f 3	(9^{-})	$0.39 \text{ ps} \Lambda$	л			- D	I^{π} : 1406 A ₂ to (7^{-}) 507 7 ₂ to (8^{-}) : hand assignment
4595 10	(9) 0 ⁺ 1 ⁺	0.59 ps 4	U			ı D	$\pi^{\pi} \cdot I ({}^{3}\text{He t}) = 0 \text{ from } 0^{+}$
4674.9? 10	0,1		c	a		P	
4684 10	1+		~	aH		- P	E(level): weighted average of 4698 15 from (³ He n) and 4678
				J			
			Cont	inued	on no	ext pa	age (footnotes at end of table)

E(level) [†]	Jπ&	$T_{1/2}^{(a)}$	Х	REF	Comments
					10 from (³ He,t).
					J^{π} : L(³ He,p)=0+2 from 0 ⁺ ; L(³ He,t)=0 from 0 ⁺ .
4781 12	1^{+}		GH	Р	E(level): weighted average of 4798 15 from (³ He,p) and 4773 10
					from (³ He,t).
					J^{π} : L(³ He,p)=0+2 from 0 ⁺ : L(³ He,t)=0 from 0 ⁺ .
4857 10	$0^{+}.1^{+}$			Р	J^{π} : L(³ He.t)=0 from 0 ⁺ .
4924 10	$0^{+}.1^{+}$			Р	J^{π} : L(³ He,t)=0 from 0 ⁺ .
4968 8 ^b 6	(10^{+})		CD	P	I^{π} : 23.43y to 0^{+} 662y to (11 ⁺) possible 1759y to (8 ⁺); hand
4700.0 0	(10)		CD	1	assignment.
4971 10	$0^{+}.1^{+}$			Р	uoorginnonu
5067 10	$0^{+}, 1^{+}$			Р	
5130 10	$0^+, 1^+$			Р	
5164 10	$0^+, 1^+$			Р	
5199 10	$0^+, 1^+$			Р	
5204.0 ^f 5	(10 ⁻)	0.28 ps 7	D	Р	J ^{π} : 807.9 γ to (9 ⁻); band assignment.
5246 10	$(0^+, 1^+)$			Р	
5277 10	$0^+, 1^+$			Р	
5388 10	$0^+, 1^+$			Р	
5430 10	$0^+, 1^+$			Р	
54// 10				P	
5510 10	$0^{+} 1^{+}$			P	
550710	(1,1+)			r	$I^{\pi}_{-}(00, (10^{+}) 1, 1)$
5508.70	(11^{+}) 0^{+} 1^{+}		D	P	J^* : 600 γ to (10 ⁺); band assignment.
5730 10	0,1 $0^+,1^+$			P	
5766 10	$0^{+},1^{+}$			P	
5820 10	$0^+,1^+$			P	
5897 8 f 4	(11^{-})	0.62 ps 7	л	Р	I^{π} : 693 4γ to (10 ⁻): hand assignment
5913 10	(11)	0.02 ps /	D	P	
5965 10	$0^+, 1^+$			P	
6005 10	$0^+, 1^+$			Р	
6085 10				Р	
6192 10	$0^+, 1^+$			Р	
6208 10	$0^+, 1^+$			Р	
6214.7 ⁴ 7	(12^+)	0.104	D	Р	J^{π} : 646.0 γ to (11 ⁺); band assignment.
6243.4° 8	(13')	0.194 ps 28	BCD	р	J^{*} : 193/ γ to (11 ⁺); band assignment.
6401 10	$0^{+},1^{+}$ $0^{+},1^{+}$			P	
6464 10	$0^{+},1^{+}$			r P	
6501 10	$0^+, 1^+$			P	
6516 10	$(0^+, 1^+)$			P	
6548 10	$0^+, 1^+$			Р	
6568 10	$(0^+, 1^+)$			Р	
6603 10	$(0^+, 1^+)$			Р	
6641 <i>10</i>	$0^+, 1^+$			Р	
6697 10	$0^+, 1^+$			P	
6/48 10	0^{+} 1 ⁺			P	
0770 <i>10</i> 6810 70	$0^{+},1^{+}$ $0^{+},1^{+}$			۲ م	
6874 10	$0^{+} 1^{+}$			r D	
6924 10	$0^{+}.1^{+}$			P	
6950 10	$0^+, 1^+$			P	
6982 10	$0^+, 1^+$			Р	
7038 10	$0^+, 1^+$			Р	

⁴⁸V Levels (continued)

E(level) [†]	Jπ&	$T_{1/2}^{(a)}$	У	KREF		Comments
7061 10	$0^{+}.1^{+}$				Р	
7106 10	$0^{+}.1^{+}$				P	
7163 10	$0^+, 1^+$				Р	
7219 10	$0^+, 1^+$				Р	
7247 10					Р	
7308 10	$0^+, 1^+$				Р	
7334.0 ^f 11	(12^{-})	0.118 ps 21	D			J^{π} : 2130 γ to (10 ⁻); band assignment.
7334.8 ^b 9	(12^{+})		D			J^{π} : 1766 γ to (11 ⁺); band assignment.
7350 10					Р	
7374 10	$0^+, 1^+$				Р	
7398 10	$0^+, 1^+$				Р	
7428 10	$0^+, 1^+$				Р	
7455 10	$0^+, 1^+$				Р	
7496 10	$0^{+},1^{+}$				P	
7520 10	$0^{+},1^{+}$				P	
7580 10	$0^{+}1^{+}$				r P	
7639 10	$0^{+}.1^{+}$				P	
$77023^{\#}14$	0,1			ĸ	- n	YPEF: p(7603)
1102.5 14				K	р	I^{π} : $I({}^{3}\text{He t})=0$ from 0^{+} for a group at 7693 10
7705 0# 14				v	~	$\mathbf{y} = \mathbf{E}(\mathbf{n}(\mathbf{r}_{i}) - 0 + \mathbf{n}(\mathbf{n}_{i}) - 0 + \mathbf{n}(\mathbf{n}_{i} + \mathbf{n}_{i}) + \mathbf{n}(\mathbf{n}_{i} + \mathbf{n}(\mathbf{n}_{i}) + \mathbf{n}(\mathbf{n}_{i} + \mathbf{n}_{i}) + \mathbf{n}(\mathbf{n}_{i} + \mathbf{n}_{i}) + \mathbf{n}(\mathbf{n}_{i} + \mathbf{n}(\mathbf{n}_{i}) + \mathbf{n}(\mathbf{n}_{i} + \mathbf{n}_{i}) + \mathbf{n}(\mathbf{n}_{i} + \mathbf{n}(\mathbf{n}_{i}) + \mathbf{n}(\mathbf{n}_{i} + \mathbf{n}(\mathbf{n}_{i}) + \mathbf{n}(\mathbf{n}_{i} + \mathbf{n}(\mathbf{n}_{i}) + \mathbf{n}(\mathbf{n}_{i} + \mathbf{n}(\mathbf{n}_{i}) + \mathbf{n}(\mathbf{n}_{i} + \mathbf{n}(\mathbf{n}_{i})) + \mathbf{n}(\mathbf{n}_{i} + \mathbf{n}(\mathbf{n}_{i}) + \mathbf{n}(\mathbf{n}_{$
7703.9 14				K V	р	AREP: p(7055).
7708.8° 14				к 		
//12.0 [#] 14				K		
7/17.3" 14				K		
7723.5" 14				K	р	XREF: $p(7/28)$. I^{π} : $I_{s}^{(3)}$ He t)=0 from 0 ⁺ for a group at 7728 10
7730.2 [#] 14				ĸ	n	S = E(110, 1) = 0 from 0 for a group at 7728 10.
7736.2 + 14				v	p	XREF : $p(7740)$
//40.2 14				K	р	I^{π} : $I({}^{3}He t)=0$ from 0^{+} for a group at 7749 10
7750 8 [#] 14				к	n	XREF n(7749)
$7755.2^{\#}14$				ĸ	р n	XREF: p(7749)
7767 6 [#] 14				v	р	$\mathbf{MEI} : \mathbf{p}(1,1,2).$
1101.0 14				v		
1112.1 14 14 8 [#] 14				v		
$77912^{\#}14$				R V		
7701.5 14 7700 5 [#] 14				N V		
7701.1 ± 14				K V		
7791.1 14				ĸ		
7794.1^{m} 14				ĸ		
7/96.9 [#] 14				К		
7804.0" 14				K	р	XREF: p(7810).
7805.7# 14				K	р	XREF: p(7810).
7809.4 [#] 14				K	р	XREF: p(7810).
щ						J^{π} : L(³ He,t)=0 from 0 ⁺ for a group at 7810 <i>10</i> .
7815.5 [#] 14				K	р	XREF: p(7810).
7821.5 [#] 14				K		
7825.4 [#] 14				K		
7830.9 [#] 14				K	р	XREF: p(7838).
7834.6 [#] 14				K	р	XREF: p(7838).
7837.8 [#] 14				K	р	XREF: p(7838).

⁴⁸V Levels (continued)

E(level) [†]	Jπ&	$T_{1/2}^{(a)}$	Σ	KREF		Comments
						J^{π} : L(³ He,t)=0 from 0 ⁺ for a group at 7838 10.
7840.5 [#] 14				K	р	XREF: p(7838).
7842.8 [#] 14				K	р	XREF: p(7838).
7846.1 [#] 14				К	р	XREF: p(7838).
7850.1 [#] 14				K		
7851.9 [#] 14				К		
7856.3 [#] 14				K	р	XREF: p(7862).
7857.9 [#] 14				K	p	XREF: p(7862).
7862.6 [#] 14				K	р	XREF: p(7862).
7863.5 [#] 14				K	р	XREF: p(7862).
7869.7 [#] 14				К	р	XREF: p(7862).
7873.0 [#] 14				K		
7875.0 [#] 14				K		
7879.3 [#] 14				K		
7883.6 [#] 14				K		
7886.4 [#] 14				K		
7893.8 [#] 14				К		
7895.3 [#] 14				K		
7899.0 [#] 14				K		
7904.3 [#] 14				K	р	XREF: p(7909).
7908.9 [#] 14				К	p	XREF: p(7909).
					-	J^{π} : L(³ He,t)=0 from 0 ⁺ for a group at 7909 10.
7912.0 [#] 14				K	р	XREF: p(7909).
7916.6 [#] 14				K	р	XREF: p(7909).
7920.1 [#] 14				K	Р	
7924.1 [#] 14				K		
7926.5 [#] 14				K		
7928.1 [#] 14				K		
7931.3 [#] 14				K		
7933.6 [#] 14				K		
7938.2 [#] 14				K		
7941.4 [#] 14				K		
7943.5 [#] 14				K		
7944.0 ^f 10	(13-)	0.090 ps 14	D			J^{π} : 2046 γ to (11 ⁻); band assignment.
7948.6 [#] 14				K	р	XREF: p(7955).
7952.1 [#] 14				K	р	XREF: p(7955).
7953.8 [#] 14				K	р	XREF: p(7955).
7957.2 [#] 14				K	р	XREF: p(7955).
7960.0 [#] 14				К	р	XREF: p(7955).
7964.2 [#] 14				К		
7967.2 [#] 14				K		
7968.9 [#] 14				K		
7971.9 [#] 14				K		
7973.1 <mark>b</mark> 8	(13+)	<0.14 ps	D			J^{π} : 639 γ to (12 ⁺); band assignment.
7973.6 [#] 14		-		K		

E(level) [†]	Jπ&	XREF		Comments
7976.9 [#] 14		K		
7980.6 [#] 14		K		
7985.1 [#] 14		K	g	XREF: p(7990).
7987.5 [#] 14		K	p	XREF: p(7990).
				J^{π} : L(³ He,t)=(0) from 0 ⁺ for a group at 7990 10.
7998.1 [#] 14		K	р	XREF: p(7990).
8002.6 [#] 14		K		
8006.3 [#] 14		K		
8011.8 [#] 14		K		
8014.2 [#] 14		K		
8018.3 [#] 14		K		
8022.4 [#] 14		K		
8028.9 [#] 14		K		
8032.3 [#] 14		K		
8037.2 [#] 14		K		
8039.5 [#] 14		K	a	XREF: p(8049).
8041.9 [#] 14		K	b	XREF: p(8049).
8043.6 [#] 14		ĸ	r p	XREF: p(8049).
8048.2 [#] 14		ĸ	r p	XREF: p(8049).
			F	J^{π} : L(³ He,t)=0 from 0 ⁺ for a group at 8049 <i>10</i> .
8053.6 [#] 14		K	р	XREF: p(8049).
8057.7 [#] 14		K	р	XREF: p(8049).
8059.5 [#] 14		K		
8061.8 [#] 14		K		
8070.5 [#] 14		K		
8074.7 [#] 14		K		
8077.9 [#] 14		K	р	XREF: p(8086).
8081.5 [#] 14		K	р	XREF: p(8086).
8084.4 [#] 14		K	р	XREF: p(8086).
				J^{π} : L(³ He,t)=0 from 0 ⁺ for a group at 8086 10.
8088.9" 14		K	р	XREF: p(8086).
8090.8# 14		K	р	XREF: p(8086).
8093.4# 14		K	р	XREF: p(8086).
8095.8 [#] 14		K		
8098.3 [#] 14		K		
8100.7 [#] 14		K		
8102.6 [#] 14		K		
8106.7 [#] 14		K		
8112.0 [#] 14		K	р	XREF: p(8119).
8115.1 [#] 14		K	р	XREF: p(8119).
8117.5 [#] 14		K	р	XREF: p(8119).
9161 10	0^{+} 1 ⁺		п	J^{n} : L(³ He,t)=(0) from 0 ⁺ for a group at 8119 <i>10</i> .
8216 10	$(0^{+} 1^{+})$		r P	
8262 10	$0^+, 1^+$		P	
8279 10	$0^+, 1^+$		Р	

E(level) [†]	Jπ&	T _{1/2} @	XREF		Comments
8286.4? 10	(15.13)		В		J^{π} : 2045 $\gamma AJ=2$ or $AJ=0$ D to (13 ⁺).
8316 10	$0^+.1^+$		_	Р	
8353 10	$0^+,1^+$			P	
8401 10	$(0^+, 1^+)$			P	
8440 10	$0^{+}.1^{+}$			P	
8465 10	$0^{+}.1^{+}$			P	
8495 6 ^{<i>a</i>} 9	(14^+)	<0.07 ps	D	-	I^{π} . 522.8 γ to (13 ⁺): hand assignment
8505 10	$0^{+} 1^{+}$	(0.07 ps	2	P	5 · 522.07 to (15), build absignment.
8530 10	$(0^+, 1^+)$			P	
8572 10	$(0^+, 1^+)$			P	
8589 07 20	(14)		B	P	I^{π} · 2344 γ D AI=1 to (13 ⁺)
8600 10	$(0^+ 1^+)$		2	P	
8645 10	$0^+ 1^+$			P	
8666 10	$(0^+, 1^+)$			P	
8712.6 [°] 10	(15^+)	0.118 ps 28	D	-	I^{π} : 217.1 γ to (14 ⁺); hand assignment.
8744 10	$(0^+ 1^+)$	01110 po 2 0	-	Р	
8767 10	$0^+ 1^+$			P	
8821 10	• ,1			P	
8887 10	$0^{+}.1^{+}$			P	
8904 10	$(0^+, 1^+)$			P	
8967 10	$0^+.1^+$			P	
8998 10	$(0^+, 1^+)$			P	
9027 10	$0^+.1^+$			Р	
9061 10	$0^{+}, 1^{+}$			Р	
9105 10	$0^{+}, 1^{+}$			Р	
9157 10	$(0^+, 1^+)$			Р	
9198 <i>10</i>	$(0^+, 1^+)$			Р	
9220 10	$0^+, 1^+$			Р	
9232 10	$0^+, 1^+$			Р	
9268 10				Р	
9301 10	$0^+, 1^+$			Р	
9333 10	$0^+, 1^+$			Р	
9362 10				Р	
9397 10	$0^+, 1^+$			Р	
9446 10	$0^+, 1^+$			Р	
9492 10	$0^+, 1^+$			Р	
9606 10	$0^+, 1^+$			Р	
9651 10	$(0^+, 1^+)$			Р	
9699 10				Р	
9732 10	$0^+, 1^+$			Р	
9770 10	$0^+, 1^+$			Р	
9808 10	$0^+, 1^+$			Р	
9846 10	$0^+, 1^+$			Р	
9891 10	$0^+, 1^+$			Р	
9910.1 ⁵ 23	(14 ⁻)	<0.056 ps	D		J^{π} : 2576 γ to (12 ⁻); band assignment.
9930 10	$0^+, 1^+$			Р	
9962 10	$0^+, 1^+$			Р	
10008 10	$0^+, 1^+$			Р	
10038 10				Р	
10073 10	$0^+, 1^+$			Р	
10107 10	$0^+, 1^+$			Р	
10133 10	$0^+, 1^+$			Р	
10179 10				Р	
10237 10	$0^+, 1^+$			Р	
10258 10	$(0^+, 1^+)$			Р	

E(level) [†]	Jπ&	T _{1/2} @	XREF		Comments
10286 10				Р	
10334 10	$0^{+} 1^{+}$			P	
10373 10	$0^{+},1^{+}$			P	
10446 10	$0^{+},1^{+}$			- P	
1011010	(15-)	(0.056	D	τπ.	25 05 (12 ⁻). hand and and
10449.5 14	(15)	<0.056 ps	D	J:	2505γ to (13); band assignment.
104/0 10	$0^{+},1^{+}$			P	
10509 10	$0^{+},1^{+}$			P	
10564 10	$0^{+},1^{+}$			P	
10585 10	$0^{+},1^{+}$			P	
10626 10	0',1'			Р	
10653 10	0+ 1+			Р	
10/0/ 10	0', 1'			Р	
10735 10	$0^{+},1^{+}$			Р	
10/// 10	0', 1'			Р	
10823 10	0',1'			Р	
10856 10				Р	
10901 10				Р	
10955 10	(0+ 1+)			Р	
10984 10	$(0^+, 1^+)$			Р	
11017 10	0', 1'			Р	
11061 10	$(0^+, 1^+)$			Р	
11102 10	$(0^{+},1^{+})$			Р	
11139 10	$0^+, 1^+$			Р	
1117/4 10	$0^{+}, 1^{+}$			Р	
11207 10	(0+ ++)			Р	
11280 10	$(0^+,1^+)$			Р	
11302 10	$0^+, 1^+$			Р	
11335 10	$0^+, 1^+$			Р	
11349 10	$0^+, 1^+$			Р	
11419 10				Р	
11466 10				Р	
11512 10				Р	
11565 10				Р	
11636 10	$0^+, 1^+$			Р	
11669 10	$0^{+}, 1^{+}$			Р	
11707 10				Р	
11768 10				Р	
11794 10				Р	
11858 10				Р	
11883 10	0+ 1+			Р	
11942 10	$0^{+},1^{+}$			P	
11991 10	$(0^+,1^+)$			P	
12008 21	$(0^+,1^+)$			P	
12046 21	$(0^+,1^+)$			P	
12133 21	$(0^+,1^+)$			P	
12169 21	$(0^{+},1^{+})$			P	
12233 21	$(0^{+},1^{+})$			r	
12215 21	0,1,			r	
12321 21	0^{+} 1 ⁺			r D	
12340 21	$0^{+},1^{+}$			r D	
12398 21	$(0^{+},1^{+})$ $0^{+},1^{+}$			ר ח	
12402 21	$0^{+},1^{+}$ $0^{+},1^{+}$			r D	
12338 21	0,1,			ר ח	
12010 21	(1.6.)		_	r 	
12643.7 ^J 13	(16 ⁻)		D	J^{π} :	2194 γ to (15 ⁻); band assignment.

⁴⁸V Levels (continued)

E(level) [†]	Jπ&	XREF		(Comments
12646 21	$(0^+, 1^+)$		Р		
12675 21			Р		
13281.7 ^{<i>f</i>} 15	(17 ⁻)	D		J^{π} : 638 γ to (16 ⁻); band assignment.	

[†] From a least-squares fit to γ -ray energies assuming $\Delta E \gamma = 1$ keV where not given for levels connected by γ transitions, and from particle-transfer reactions in other cases, unless otherwise noted.

[‡] From $(p,n\gamma)$ based on E γ data (1973SaYJ), which are not explicitly given by the authors.

[#] From (p,γ) :resonance (1961Du03).

^{*a*} From DSAM in (²⁴Mg,n3p γ) (2002Br42), unless otherwise noted. ^{*b*} For levels from (³He,t) up to 12675, 0⁺,1⁺ from L(³He,t)=0 from 0⁺ and (0⁺,1⁺) from L(³He,t)=(0), unless otherwise noted.

^{*a*} Band(A): $K^{\pi}=4^+$, $\alpha=0$, g.s. yrast band.

^b Band(B): $K^{\pi}=1^+$, yrare band. Configuration= $\pi 3/2[321]-\nu 5/2[312]$ (2002Br42).

^c Band(C): $K^{\pi}=4^+$, $\alpha=1$, g.s. yrast band.

^{*d*} Band(D): $K^{\pi} = 1^{-}$ rotational band.

^{*e*} Band(E): $K^{\pi} = 4^{-}$ rotational band.

^{*f*} Band(F): $K^{\pi} = 8^{-}$ rotational band. Configuration= $d_{3/2}^{-1} \otimes f_{7/2}^{n+1}$ (2002Br42).

							Adopted Levels	, Gammas (cont	tinued)
								$\gamma(^{48}V)$	
E _i (level)	\mathbf{J}_i^{π}	Eγ [‡]	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.	δ	$lpha^\dagger$	Comments
308.29	2+	308.27 6	100	0.0	4+	E2		0.00515 7	B(E2)(W.u.)=2.745 <i>16</i> α (K)=0.00466 7; α (L)=0.000432 6; α (M)=5.64×10 ⁻⁵ 8 α (N)=2.85×10 ⁻⁶ 4
									E _γ : weighted average of 308.24 <i>6</i> from ⁴⁸ Cr <i>ε</i> decay (21.56 h), 308.9 5 from (⁴⁰ Ca,2pγ), 308.3 <i>I</i> from (²⁴ Mg,n3pγ), 308.2 2 from (¹⁶ O,pnγ), 308.5 <i>8</i> from (p,γ), and 308.3 <i>I</i> from (p,nγ). Mult.: from ce data and $\gamma\gamma(\theta,\text{pol})$ in ⁴⁸ Cr <i>ε</i> decay
420.69	1+	112.39 8	100.0 21	308.29	2+	M1+E2	0.016 +29-15	0.0164 5	$\alpha(K)=0.0148 \ 4; \ \alpha(L)=0.00139 \ 4; \ \alpha(M)=0.000182 \ 5 \ \alpha(N)=9.29\times10^{-6} \ 25$
									E _γ : weighted average of 112.31 8 from ⁴⁸ Cr ε decay (21.56 h), 112.4 <i>I</i> from (²⁴ Mg,n3pγ), 112.4 2 from (¹⁶ O,pnγ), and 112.5 <i>I</i> from (p,nγ). Other: 112.2 5 from (⁴⁰ Ca,2pγ). I _γ : from ⁴⁸ Cr ε decay.
									Mult.: from ce data and $\gamma\gamma(\theta,\text{pol})$ in ⁴⁸ Cr ε decay (1979PrZU,1968We01). δ : from $\gamma\gamma(\theta)$ in ⁴⁸ Cr ε decay (1968We01). Other: $-0.14 < \delta < -0.02$ from $\gamma(\theta)$ in (p,n γ) (1973SaZF).
427.89	5+	420.5 ^{&} 427.9 <i>1</i>	<0.031 100	0.0 0.0	4+ 4+	M1+E2	-0.135 15	0.000650 10	E _γ ,I _γ : from ⁴⁸ Cr ε decay. B(M1)(W.u.)=0.043 +8-6; B(E2)(W.u.)=10.6 +33-25 α=0.000650 10; α(K)=0.000588 9; α(L)=5.39×10 ⁻⁵ 8; α(M)=7.06×10 ⁻⁶ 11 α(N)=3.67×10 ⁻⁷ 6
									E _γ : from (p,nγ). Others: 428.2 5 from (⁴⁰ Ca,2pγ), 427.8 4 from (²⁴ Mg,n3pγ), 427.9 2 from (¹⁶ O,pnγ), and 428.0 <i>12</i> from (p,γ). Mult.: from $\gamma(\theta,\text{pol})$ and $\gamma(\theta)$ in (p,nγ) (1976Ri01,1973SaZF).
									δ: from $\gamma(\theta)$ in (p,nγ) (19/3SaZF). Other: 0.13 8 from $\gamma(\theta, \text{pol})$ in (p,nγ) (1976Ri01), -0.13 3 from $\gamma(\theta)$ in (¹⁶ O,pnγ) (1974Ta15).
518.65	1-	97.9 <i>1</i>	51 4	420.69	1+	(E1)		0.0338 5	B(E1)(W.u.)= $6.7 \times 10^{-5} 4$ α (K)= $0.0306 4$; α (L)= $0.00279 4$; α (M)= $0.000363 5$ α (N)= $1.825 \times 10^{-5} 26$
									E_{γ} : weighted average of 97.7 <i>l</i> from (²⁴ Mg,n3pγ), 98.0 2 from (¹⁶ O,pnγ), and 98.0 <i>l</i> from (p,nγ). Other: 99.0 <i>l0</i> from (⁴⁰ Ca,2pγ).
									I_{γ} : unweighted average of 50 13 from (⁴⁰ Ca,2p γ), 52 11 from

 ${}^{48}_{23}\mathrm{V}_{25}$ -14

						Adopted Lev	vels, Gammas (o	continued)
						$\gamma(2)$	⁴⁸ V) (continued)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{\ddagger}$	I_{γ}^{\ddagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	δ	α^{\dagger}	Comments
518.65	1-	210.4 1	100.0 28	308.29 2+	(E1+M2)	+0.04 3	0.00324 7	(24Mg,n3pγ), 40.8 28 from (16O,pnγ), and 61.3 32 from (p,nγ). Mult.,δ: D(+Q) with δ=+0.15 23 from γ(θ) in (p,nγ); Δπ=yes from level scheme; M2 is less likely based on RUL. Other: δ(Q/D)=0.0 2 from (16O,pnγ). B(E1)(W.u.)=1.316×10-5 +49-50 α(K)=0.00294 6; α(L)=0.000268 6; α(M)=3.50×10-5 8 α(N)=1.80×10-6 4 B(M2)(W.u.)=2.2 +46-18 exceeds RUL=1.0. Eγ: weighted average of 210.8 5 from (40Ca,2pγ), 210.3 1 from (24Mg,n3pγ), 210.4 2 from (16O,pnγ), 210.7 8 from (p,γ), and
613.36	4+	185.5 <i>1</i>	12.4 <i>23</i>	427.89 5+	(M1(+E2))	+0.025 45	0.00459 <i>14</i>	210.4 <i>I</i> from (p,nγ). I _γ : from (¹⁶ O,pnγ). Others: 100 <i>13</i> from (⁴⁰ Ca,2pγ), 100 <i>11</i> from (²⁴ Mg,n3pγ), and 100.0 <i>32</i> from (p,nγ). Mult.: D+Q from $\gamma(\theta)$ in (p,nγ); $\Delta \pi$ =yes from level scheme. δ: from $\gamma(\theta)$ in (p,nγ). Other: +0.03 <i>5</i> from (¹⁶ O,pnγ). B(M1)(W.u.)=0.025 +7-6; B(E2)(W.u.)<11 $\alpha(K)=0.00415 \ 13; \alpha(L)=0.000385 \ 12; \alpha(M)=5.05\times10^{-5} \ 16$ $\alpha(N)=2.60\times10^{-6} \ 8$ E _γ : from (²⁴ Mg,n3pγ) and (p,nγ). Others: 185.5 <i>5</i> from (¹⁶ O,pnγ). I _γ : from (²⁴ Mg,n3pγ) and (p,nγ). Others: 12.4 <i>34</i> from (¹⁶ O,pnγ).
		305 ^{&} 613.4 <i>I</i>	<5.6 100.0 <i>23</i>	308.29 2 ⁺ 0.0 4 ⁺	M1+E2	-0.30 7	0.000306 <i>10</i>	Mult., δ : D(+Q) from $\gamma(\theta)$ in (p,n γ); $\Delta \pi$ =no from level scheme. Other: $\delta(Q/D)$ =+0.01 9 from $\gamma(\theta)$ in (¹⁶ O,pn γ). E _{γ} ,I _{γ} : from (²⁴ Mg,n3p γ) only. B(M1)(W.u.)=0.00506 +32-41; B(E2)(W.u.)=3.0 +14-12 α =0.000306 10; α (K)=0.000277 9; α (L)=2.53×10 ⁻⁵ 8; α (M)=3.32×10 ⁻⁶ 11 α (N)=1.73×10 ⁻⁷ 5 E _{γ} : from (²⁴ Mg,n3p γ) and (p,n γ). Others: 613.5 2 from (¹⁶ O,pn γ); 616.1 15 from (p, γ) is discrepant. L _{γ} : from (²⁴ Mg,n3p γ) and (p,n γ). Others: 100.0 34 from
627.21	6+	199.3 2	65 <i>9</i>	427.89 5+	M1+E2	-0.14 2	0.00426 <i>14</i>	(¹⁶ O,pn γ). Mult.: from $\gamma(\theta)$ and $\gamma(\text{pol})$ in (p,n γ) and $\gamma(\theta)$ in (¹⁶ O,pn γ). δ : unweighted average of -0.44 <i>10</i> (1974Ta15) from (¹⁶ O,pn γ) (1974Ta15), -0.19 <i>2</i> (1973SaZF) and -0.28 <i>5</i> (1976Ri01) from (p,n γ). B(M1)(W.u.)=0.0141 +19-17; B(E2)(W.u.)=17 +6-5 $\alpha(\text{K})$ =0.00385 <i>13</i> ; $\alpha(\text{L})$ =0.000358 <i>12</i> ; $\alpha(\text{M})$ =4.68×10 ⁻⁵ <i>16</i> $\alpha(\text{N})$ =2.40×10 ⁻⁶ 8 E _{γ} : from (²⁴ Mg,n3p γ), (¹⁶ O,pn γ), and (p,n γ). Other: 199.6 <i>5</i>

⁴⁸₂₃V₂₅-15

						Adopted Lev	vels, Gammas	(continued)
						<u>γ(</u>	⁴⁸ V) (continued	<u>1)</u>
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	δ	$lpha^\dagger$	Comments
	_							 from (⁴⁰Ca,2pγ), I_γ: unweighted average of 44.0 <i>10</i> from (⁴⁰Ca,2pγ), 75 <i>9</i> from (²⁴Mg,n3pγ), 82 <i>15</i> from (¹⁶O,pnγ), and 59 <i>8</i> from (p,nγ). Mult.: from γ(θ,pol) in (¹⁶O,pnγ) (1976Ri01). δ: from γ(θ) in (¹⁶O,pnγ) (1974Ta15). Others: -0.11 <i>9</i> from γ(θ,pol) in (¹⁶O,pnγ) (1976Ri01), -0.23<δ<+0.03 from (p,nγ) (1973Sa7F).
627.21	6+	627.3 2	100 8	0.0 4+	E2		0.000485 7	B(E2)(W.u.)=4.47 +49-42 α =0.000485 7; α (K)=0.000439 6; α (L)=4.02×10 ⁻⁵ 6; α (M)=5.26×10 ⁻⁶ 7 α (N)=2.71×10 ⁻⁷ 4 E _y : from (p,ny). Others: 627.7 5 from (⁴⁰ Ca,2py), 627.2 3 from (²⁴ Me n ² av), and (27.2 4 form (¹⁶ O nuc))
745.01	2-	226.3 1	100.0 11	518.65 1-	M1+E2	-0.07 1	0.00287 <i>4</i>	(* Mg,n5py), and 627.2 4 from (* 0,pny). I_{γ} : from (p,n γ). Others: 100 <i>10</i> from (⁴⁰ Ca,2p γ), 100 9 from (²⁴ Mg,n3p γ), and 100 <i>15</i> from (¹⁶ O,pn γ). Mult.: Q from $\gamma(\theta)$ in (p,n γ); M2 ruled out by RUL. B(M1)(W.u.)=0.100 + <i>1</i> 2- <i>10</i> ; B(E2)(W.u.)=24 +8-7 α (K)=0.00260 4; α (L)=0.000240 4; α (M)=3.15×10 ⁻⁵ 5 α (N)=1.623×10 ⁻⁶ 25 E_{γ} : from (²⁴ Mg,n3p γ). Others: 226.4 5 from (⁴⁰ Ca,2p γ), 226.3 2
		324.3 <i>I</i>	3.37 <i>33</i>	420.69 1+	(E1(+M2))	-0.03 19	0.00091 <i>19</i>	In the (p,py), 227.2 8 from (p,y), and 220.3 7 from (p,py). I _γ : from (p,py). Others: 100.0 22 from (²⁴ Mg,n3py) and 100.0 22 from (¹⁶ O,pny). Mult.: M1+E2 with δ (E2/M1)=-0.14 <i>1</i> 2 or E1+M2 with δ (M2/E1)=-2.7 6 from $\gamma(\theta,\text{pol})$ in (p,ny) (1976Ri01), with the latter ruled out by RUL. δ : from $\gamma(\theta)$ in (p,ny) (1973SaZF). Other: -0.14 <i>1</i> 2 from $\gamma(\theta,\text{pol})$ in (p,ny) (1976Ri01), -0.02 4 from $\gamma(\theta)$ in (¹⁶ O,pny). B(E1)(W.u.)=2.7×10 ⁻⁵ +7-6 ρ 000001 <i>i</i> 0. (<i>i</i> 0.00002 <i>i</i> 7. (<i>i</i> .) 7.5±10 ⁻⁵ <i>i</i> 6.
								α=0.00091 19; α(K)=0.00082 17; α(L)=7.5×10-5 16; α(M)=9.8×10-6 21 α(N)=5.1×10-7 11 Εγ: from (24Mg,n3pγ). Others: 324.2 5 from (16O,pnγ) and 324.2 1 from (p,nγ). Iγ: from (p,nγ). Others: 3.4 9 from (24Mg,n3pγ) and 3.3 11 from (16O,pnγ). Mult.δ: D(+Q) from γ(θ) in (p,nγ) (1973SaZF); Δπ=yes from level scheme. E = 0.00000000000000000000000000
		436.7 1	5.3 4	308.29 2+	(E1(+M2))	-0.04 18	0.00040 8	B(E1)(W.u.)=1.73×10 ⁻³ 37 α =0.00040 8; α (K)=0.00037 7; α (L)=3.3×10 ⁻⁵ 6; α (M)=4.4×10 ⁻⁶ 8 α (N)=2.3×10 ⁻⁷ 4

From ENSDF

						Adopted Lev	els, Gammas (co	ontinued)
						$\gamma(4)$	⁸ V) (continued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f = \mathbf{J}_j'$	Mult.	δ	$lpha^\dagger$	Comments
	_							 E_γ: weighted average of 436.6 <i>1</i> from (²⁴Mg,n3pγ) and 436.8 <i>1</i> from (p,nγ). Other: 436.7 <i>5</i> from (¹⁶O,pnγ). I_γ: from (p,nγ). Others: 5.3 <i>10</i> from (²⁴Mg,n3pγ) and 5.4 22 from (¹⁶O,pnγ). Mult.,δ: D(+Q) from γ(θ) in (p,nγ) (1973SaZF); Δπ=yes from level scheme.
764.97	3+	151.7 2	6.0 6	613.36 4	[M1]		0.00757 11	α (K)=0.00684 <i>10</i> ; α (L)=0.000638 <i>9</i> ; α (M)=8.35×10 ⁻⁵ <i>12</i> α (N)=4.28×10 ⁻⁶ <i>6</i> Mult.: assumed based on comparions with RUL for T ₁ α <2.6 ps
		344 <mark>&</mark>		420.69 1 ⁻				1/2=2.0 ps.
		456.7 1	100 4	308.29 2	M1+E2	-0.02 1	0.000546 8	$ \begin{array}{l} \alpha = 0.000546 \ 8; \ \alpha(\mathrm{K}) = 0.000495 \ 7; \ \alpha(\mathrm{L}) = 4.53 \times 10^{-5} \ 6; \\ \alpha(\mathrm{M}) = 5.93 \times 10^{-6} \ 8 \\ \alpha(\mathrm{N}) = 3.09 \times 10^{-7} \ 4 \end{array} $
								E _γ : from (²⁴ Mg,n3pγ) and (p,nγ). Other: 457.2 <i>15</i> from (p,γ). I _γ : from (p,ηγ). Other: 100 <i>20</i> from (p,γ). Mult.: M1(+E2) with δ =0.00 <i>5</i> or E1+M2 with δ =-3.4 <i>10</i> for J(765)=3 from γ(θ,pol) in (p,nγ) (1976Ri01), with the latter ruled out by RUL. δ: from γ(θ) in (p,nγ) (1973SaZF). Other: 0.00 <i>5</i> from γ(θ,pol) in (p,nγ) (1976Ri01).
		764.9 1	82 4	0.0 4	(M1(+E2))	-0.025 25	0.0001809 25	α = 0.0001809 25; α(K)=0.0001640 23; α(L)=1.493×10-5 21; α(M)=1.957×10-6 27 α(N)=1.022×10-7 14 Eγ: from (24Mg,n3pγ) and (p,nγ). Other: 767.4 15 from (p,γ) is discrepant. Iγ: from (p,nγ). Mult.,δ: D(+Q) from γ(θ) in (p,nγ); Δπ=no from level scheme.
775.9	3,5	775.9 5	100	0.0 4	D			 E_γ: weighted average of 775.8 5 from (⁴⁰Ca,2pγ) and 776.2 <i>10</i> from (¹⁶O,pnγ). Mult.: strong stretched dipole from γ anisotropy in (¹⁶O,pnγ) (1974Ta15).
1055.83	3-	310.8 1	100.0 <i>33</i>	745.01 2	- M1(+E2)	-0.025 45	1.32×10 ⁻³ 2	B(M1)(W.u.)=0.13 +6-4; B(E2)(W.u.)<25 $\alpha(K)$ =0.001193 22; $\alpha(L)$ =0.0001098 20; $\alpha(M)$ =1.438×10 ⁻⁵ 26 $\alpha(N)$ =7.45×10 ⁻⁷ 14 E _{\gamma} : from (p,n γ) and (²⁴ Mg,n3p γ). Other: 310.8 2 from (¹⁶ O,pn γ). I _{γ} : from (p,n γ) and (¹⁶ O,pn γ). Other: 100.0 34 from (²⁴ Mg,n3p γ).

					Adopted	Levels, Gammas	(continued)
						γ (⁴⁸ V) (continue	<u>d)</u>
E_i (level) J_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$E_f J_f^{\pi}$	Mult.	δ	a^{\dagger}	Comments
							Other: 310.8 2 from (¹⁶ O,pn γ). I $_{\gamma}$: from (p,n γ) and (¹⁶ O,pn γ). Other: 100.0 34 from (²⁴ Mg,n3p γ). Mult.: from $\gamma(\theta$,pol) and $\gamma(\theta)$ in (p,n γ) (1976Ri01,1973SaZF). δ : from $\gamma(\theta)$ in (¹⁶ O,pn γ) (1974Ta15). Other: 0.05 9 from
1055.02 2-	4418	11.1	(12.2) 4+	1211		0.000000.5	$\gamma(\theta, \text{pol})$ in $(p, n\gamma)$ (1976Ri01).
1055.83 3	441	11.1	613.36 4	[E1]		0.000390-3	B(E1)(W,U.)=1.2×10 ⁻⁴ +6-3 α =0.000390 5; α (K)=0.000353 5; α (L)=3.22×10 ⁻⁵ 5; α (M)=4.21×10 ⁻⁶ 6 α (N)=2.182×10 ⁻⁷ 31
	527.2.1	62.11	510 (5 1-	$E_2(+M_2)$	0.06.0	0.00070.5	E_{γ}, I_{γ} : from (⁴⁰ Ca,2p γ) only (1994Ca04).
	537.2 <i>I</i>	6.3 <i>11</i>	0.0 4+	E2(+M3)	-0.06 9	0.00079 5	B(E2)(W.u.)=14 +11-6 α =0.00079 5; α (K)=0.00071 4; α (L)=6.6×10 ⁻⁵ 4; α (M)=8.6×10 ⁻⁶ 5 α (N)=4.40×10 ⁻⁷ 28 E _{γ} : from (²⁴ Mg,n3p γ). Others: 537.2 10 from (¹⁶ O,pn γ), 537.0 15 from (p, γ), and 537.2 2 from (p,n γ). I _{γ} : weighted average of 5.6 11 from (²⁴ Mg,n3p γ), 9.9 33 from (¹⁶ O,pn γ), and 8.7 33 from (p,n γ). Mult., δ : Q(+O) from $\gamma(\theta)$ in (¹⁶ O,pn γ) (1974Ta15); M2(+E3) ruled out by RUL. B(E1)(W u) =4 4×10 ⁻⁶ +26-18
				[]			$\alpha = 5.40 \times 10^{-5} \ 8; \ \alpha(\text{K}) = 4.89 \times 10^{-5} \ 7; \ \alpha(\text{L}) = 4.44 \times 10^{-6} \ 6; \alpha(\text{M}) = 5.81 \times 10^{-7} \ 8 \alpha(\text{N}) = 3.03 \times 10^{-8} \ 4 E_{\gamma}, I_{\gamma}: \text{ other: } 1057.0 \ 25 \text{ from } (\text{p}, \gamma) \text{ with } \text{I}(1057\gamma)/\text{I}(537\gamma) = 2.3 8/3 \ 1 \ (1972\text{Bb}14).$
1099.17 4-	486	3.4	613.36 4+	[E1]		0.000303 4	B(E1)(W.u.)= 3.1×10^{-5} 7 α =0.000303 4; α (K)=0.000275 4; α (L)= 2.499×10^{-5} 35; α (M)= 3.27×10^{-6} 5 α (N)= 1.697×10^{-7} 24 E _y ,I _y : from (⁴⁰ Ca,2py) only (1994Ca04).
	671.3 4	4.1 9	427.89 5+	[E1]		0.0001385 <i>19</i>	B(E1)(W.u.)=1.44×10 ⁻⁵ 33 α =0.0001385 19; α (K)=0.0001255 18; α (L)=1.141×10 ⁻⁵ 16; α (M)=1.494×10 ⁻⁶ 21 α (N)=7.78×10 ⁻⁸ 11 E _{γ} : weighted average of 671.2 4 from (²⁴ Mg,n3p γ) and 671.6 10 from (¹⁶ O,pn γ).
	1099.3 2	100.0 9	0.0 4+	E1(+M2)	≤0.052	5.03×10 ⁻⁵ 7	B(E1)(W.u.)=8.0×10 ⁻⁵ +9-8; B(M2)(W.u.)<0.9 α =5.03×10 ⁻⁵ 7; α (K)=4.56×10 ⁻⁵ 7; α (L)=4.13×10 ⁻⁶ 6;

From ENSDF

					Adopted	Levels, Gan	nmas (continued)	
						γ ⁽⁴⁸ V) (con	ntinued)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\ddagger}$	I_{γ}^{\ddagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	δ	$lpha^{\dagger}$	Comments
								$\begin{aligned} &\alpha(M) = 5.41 \times 10^{-7} \ 8\\ &\alpha(N) = 2.82 \times 10^{-8} \ 4\\ &E_{\gamma}: \text{ weighted average of } 1100.0 \ 10 \ \text{from } (^{40}\text{Ca},2p\gamma),\\ &1099.2 \ 4 \ \text{from } (^{24}\text{Mg},n3p\gamma), \ 1099.2 \ 2 \ \text{from} \\ &(^{16}\text{O},pn\gamma), \ \text{and} \ 1099.3 \ 2 \ \text{from } (p,n\gamma). \ \text{Other: } 1102.5\\ &25 \ \text{from } (p,\gamma). \end{aligned}$ Mult.: from $\alpha(K)\exp$ and $\gamma(\theta,\text{pol})$ in $(p,n\gamma).$ $\delta: \ \text{from } \alpha(K)\exp$ =4.0×10 ⁻⁵ 6 in $(p,n\gamma)$ (1977Sa03). Other: -0.015 155 \ \text{from } \gamma(\theta,\text{pol}) in $(p,n\gamma)$ (1976Mo26).
1120.5	(2,3,4)+	811.0 [#] 20	52 [#] 22	308.29 24				
1254.48	7+	1123.0 [#] 30 627.5 4	100 [#] 22 100.00 31	0.0 4 ⁺ 627.21 6 ⁺	(M1(+E2))	-0.05 7	0.000274 5	B(M1)(W.u.)=0.21 +7-5; B(E2)(W.u.)≤25 α =0.000274 5; α (K)=0.000248 4; α (L)=2.27×10 ⁻⁵ 4; α (M)=2.97×10 ⁻⁶ 5 α (N)=1.548×10 ⁻⁷ 26 E _γ : weighted average of 627.7 5 from (⁴⁰ Ca,2pγ), 627.4 4 from (²⁴ Mg,n3pγ), and 627.7 8 from (¹⁶ O,pnγ). Mult.,δ: D(+Q) from $\gamma(\theta)$ in (¹⁶ O,pnγ); $\Delta\pi$ =no from level scheme.
		826.5 3	2.04 <i>31</i>	427.89 5+	[E2]		0.0002233 31	B(E2)(W.u.)=6.9 +25-16 α =0.0002233 31; α (K)=0.0002023 28; α (L)=1.847×10 ⁻⁵ 26; α (M)=2.419×10 ⁻⁶ 34 α (N)=1.254×10 ⁻⁷ 18
1264.53	5+	499 &	<6.3	764.97 34	[E2]		0.000984 14	α =0.000984 <i>14</i> ; α (K)=0.000891 <i>12</i> ; α (L)=8.19×10 ⁻⁵ <i>11</i> ; α (M)=1.071×10 ⁻⁵ <i>15</i> α (N)=5.49×10 ⁻⁷ 8 F. L i fram ℓ^{24} Mg n ² ma) only
		637.3 2	31 5	627.21 6*	[M1,E2]		3.6×10 ⁻⁴ 10	$\alpha = 3.6 \times 10^{-4} \ I0; \ \alpha(\text{K}) = 3.3 \times 10^{-4} \ 9; \ \alpha(\text{L}) = 3.0 \times 10^{-5} \ 8; \ \alpha(\text{M}) = 3.9 \times 10^{-6} \ I1 \ \alpha(\text{N}) = 2.0 \times 10^{-7} \ 5 \ \text{I}_{\gamma}: \text{ weighted average of } 27 \ 6 \ \text{from } (^{24}\text{Mg,n}3\text{p}\gamma) \text{ and} \ 33 \ 5 \ \text{from } (\text{p,n}\gamma).$
		651.2 2	100 5	613.36 44	M1+E2	-0.22 12	0.000261 11	$\begin{aligned} &\alpha = 0.000261 \ 11; \ \alpha(\text{K}) = 0.000237 \ 10; \ \alpha(\text{L}) = 2.16 \times 10^{-5} \\ &9; \ \alpha(\text{M}) = 2.83 \times 10^{-6} \ 12 \\ &\alpha(\text{N}) = 1.47 \times 10^{-7} \ 6 \\ &\text{E}_{\gamma}: \ \text{from} \ (^{24}\text{Mg,n}3\text{p}\gamma) \ \text{and} \ (\text{p,n}\gamma). \ \text{Other:} \ 651.9 \ 10 \\ &\text{from} \ (^{16}\text{O,pn}\gamma). \end{aligned}$

 ${}^{48}_{23}\mathrm{V}_{25}$ -19

L

From ENSDF

						Adopted	Levels, Gammas	(continued)
							$\gamma(^{48}V)$ (continued	<u>d)</u>
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	δ	α^{\dagger}	Comments
								I _γ : from (p,nγ). Other: 100 6 from (²⁴ Mg,n3pγ). Mult.: M1+E2 with δ =-0.32 <i>14</i> or E1+M2 with δ =-4 2 for J(1265)=5 from γ(θ,pol) in (p,nγ) (1976Ri01), with the latter ruled out by RUL. δ: weighted average of -0.32 <i>14</i> (1976Ri01) and -0.15 <i>12</i> (1973SaZF) in (p,nγ).
1264.53	5+	836 ^{&}	<6.3	427.89 5+	[M1,E2]		0.000184 <i>33</i>	α =0.000184 33; α (K)=0.000166 30; α (L)=1.52×10 ⁻⁵ 27; α (M)=2.0×10 ⁻⁶ 4 α (N)=1.03×10 ⁻⁷ 18 Evalue: from (²⁴ Mg,n3py) only.
		1264 ^{&}	<6.3	0.0 4+	[M1,E2]		9.1×10 ⁻⁵ 10	$\alpha = 9.1 \times 10^{-5} \ 10; \ \alpha(\text{K}) = 6.7 \times 10^{-5} \ 6; \ \alpha(\text{L}) = 6.1 \times 10^{-6} \ 5; \alpha(\text{M}) = 8.0 \times 10^{-7} \ 7 \alpha(\text{N}) = 4.2 \times 10^{-8} \ 4; \ \alpha(\text{IPF}) = 1.77 \times 10^{-5} \ 31 E_{\text{ev}} \text{Lv}; \ \text{from} \ (^{24}\text{Mg.n3pv}) \text{ only.}$
1521.41	2+	756.4 <i>1</i>	44 5	764.97 3+	(M1(+E2))	+0.06 8	0.0001854 <i>30</i>	
		1101.0 2	78 9	420.69 1+	(M1(+E2))	-0.01 4	8.83×10 ⁻⁵ 12	
		1212.9 2	100 9	308.29 2+	(M1+E2)	+0.21 7	8.13×10 ⁻⁵ 13	
1557.58	4-	458 &	19.4	1099.17 4-	[M1,E2]		9.×10 ⁻⁴ 4	B(M1)(W.u.)=0.032 +14-9 (if pure M1); B(E2)(W.u.)= $3.8 \times 10^2 +17-11$ (if pure E2) α =9.E-4 4; α (K)= 8.3×10^{-4} 34; α (L)= 7.7×10^{-5} 32; α (M)= 1.0×10^{-5} 4 α (N)= 5.2×10^{-7} 21 E. L.: from (⁴⁰ Ca 2py) only (1994Ca04)
		501.8 <i>1</i>	100 4	1055.83 3-	M1+E2	-0.10 3	0.000449 7	B(M1)(W.u.)=0.12 +5-3; B(E2)(W.u.)=12 +11-6 α =0.000449 7; α (K)=0.000406 7; α (L)=3.72×10 ⁻⁵ 6; α (M)=4.87×10 ⁻⁶ 8

 $^{48}_{23}\mathrm{V_{25}\text{--}20}$

						Adopted	Levels, Ga	mmas (continue	<u>d)</u>
							$\gamma(^{48}\text{V})$ (co	ontinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.	δ	$lpha^{\dagger}$	Comments
1557.58	4-	812.4 2	24 5	745.01	2-	E2		0.0002337 <i>33</i>	B(E2)(W.u.)=27 +12-7 α =0.0002337 33; α (K)=0.0002117 30; α (L)=1.934×10 ⁻⁵ 27; α (M)=2.532×10 ⁻⁶ 35 α (N)=1.313×10 ⁻⁷ 18 E _v : from (²⁴ Mg,n3py), Others: 812.7 10 from (¹⁶ O,pny)
									and 812.2 3 from (p,n γ). I $_{\gamma}$: weighted average of 18 4 from (²⁴ Mg,n3p γ), 41 10 from (¹⁶ O,pn γ), and 28 5 from (p,n γ). Mult.: Q from $\gamma(\theta)$ in (p,n γ) and (Q) from γ anisotropy in (¹⁶ O,pn γ); M2 ruled out by RUL.
1685.58	5(-)	586.4 2	100.0 22	1099.17	4-	(M1(+E2))	-0.03 6	0.000316 5	B(M1)(W.u.)=0.165 +26-21; B(E2)(W.u.)<11 α=0.000316 5; α(K)=0.000287 4; α(L)=2.62×10 ⁻⁵ 4; α(M)=3.43×10 ⁻⁶ 5 α(N)=1.787×10 ⁻⁷ 27 E _γ : weighted average of 586.5 4 from (²⁴ Mg,n3pγ), 586.4 5 from (¹⁶ O,pnγ), and 586.3 2 from (p,nγ). Mult.,δ: D(+Q) from $\gamma(\theta)$ in (¹⁶ O,pnγ); $\Delta \pi$ =(no) from
		1685.1 <i>6</i>	10.0 <i>19</i>	0.0	4+	[E1]		0.000432 6	level scheme. Other: stretched dipole D from γ anisotropy in (⁴⁰ Ca,2p γ). B(E1)(W.u.)=1.62×10 ⁻⁵ +36-33 α =0.000432 6; α (K)=2.198×10 ⁻⁵ 31; α (L)=1.989×10 ⁻⁶ 28; α (M)=2.61×10 ⁻⁷ 4 α (N)=1.364×10 ⁻⁸ 19; α (IPF)=0.000408 6 E _{γ} : weighted average of 1685.3 4 from (²⁴ Mg,n3p γ) and 1682 6 11 from (¹⁶ O prov)
1691.5	(2+,3-)	1173.0 [#] 30	45 [#] 15	518.65	1-				1065.0 11 from (= 0,piry).
1750.2	(6+)	1691 [#] 3 486 1 1124 ^{&}	100 [#] 15 18 7 <5.9	0.0 1264.53 627.21	4 ⁺ 5 ⁺ 6 ⁺				

					Adopted	Levels, Gan	nmas (continued))
						γ ⁽⁴⁸ V) (con	tinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ} ‡	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	δ	α^{\dagger}	Comments
1750.2	(6 ⁺)	1137 <mark>&</mark> 1322 <i>1</i>	<7.1 100 7	$613.36 4^+ 427.89 5^+$				
1780.98	3+	1167.8 2	98 12	613.36 4+	D(+Q)	-0.07 14		E_{γ}, I_{γ} : from (p,n γ). Mult., δ : from $\gamma(\theta)$ in (p,n γ).
		1472.5 2	100 12	308.29 2+	D(+Q)	-0.03 10		E_{γ}, I_{γ} : from (p,n γ). Mult., δ : from $\gamma(\theta)$ in (p,n γ).
1998.45	2-,3-	1780.9 <i>3</i> 899.4 <i>2</i> 1253.3 <i>2</i>	35 7	$\begin{array}{rrr} 0.0 & 4^+ \\ 1099.17 & 4^- \\ 745.01 & 2^- \end{array}$				E_{γ}, I_{γ} : from (p,n γ). E_{γ} : from (p,n γ) only. E_{γ} : from (p,n γ) only.
2062.16	5(-)	504.8 2	100 8	1557.58 4-	(M1(+E2))	+0.07 7	0.000440 <i>10</i>	B(M1)(W.u.)=0.11 +7-4; B(E2)(W.u.)≤33 α=0.000440 10; α(K)=0.000399 9; α(L)=3.64×10 ⁻⁵ 8; α(M)=4.78×10 ⁻⁶ 10 α(N)=2.49×10 ⁻⁷ 5 E _γ : weighted average of 504.7 3 from (²⁴ Mg,n3pγ) and 504.9 2 from (¹⁶ O,pnγ). I _γ : from (²⁴ Mg,n3pγ). Others: 100 10 from (¹⁶ O,pnγ) and 100 10 from (α,pnγ). Mult.,δ: D(+Q) from γ(θ) in (¹⁶ O,pnγ); Δπ=(no) from level scheme.
		1006.2 3	48 8	1055.83 3-	(E2)		0.0001355 19	 B(E2)(W.u.)=17 +7-4 α=0.0001355 19; α(K)=0.0001228 17; α(L)=1.119×10⁻⁵ 16; α(M)=1.466×10⁻⁶ 21 α(N)=7.62×10⁻⁸ 11 E_γ: from (²⁴Mg,n3pγ). Other: 1006.3 10 from (¹⁶O,pnγ), 1007.0 from (α,pnγ). I_γ: weighted average of 54 8 from (²⁴Mg,n3pγ), 43 10 from (¹⁶O,pnγ), and 45 10 from (α,pnγ). Mult.: (Q) from γ anisotropy in (¹⁶O,pnγ); M2 ruled out by RUL.
		1447.1 ^{&} 15	50	613.36 4+	[E1]		0.000252 4	B(E1)(W.u.)=5.6×10 ⁻⁵ +24–15 α =0.000252 4; α (K)=2.81×10 ⁻⁵ 4; α (L)=2.54×10 ⁻⁶ 4; α (M)=3.33×10 ⁻⁷ 5 α (N)=1.741×10 ⁻⁸ 25; α (IPF)=0.0002214 33 E _{γ} ,I _{γ} : from (⁴⁰ Ca,2p γ) only.
2196	(3,4)-	$1143.0^{+\infty}$ 30 2196.0 [#] 35	33 # 7 100 # 30	$1055.83 \ 3^{-}$ $0.0 \ 4^{+}$				
2231.49	8+	977.2 3	100 6	1254.48 7+	M1+E2	-0.34 4	0.0001142 18	B(M1)(W.u.)=0.053 +11-8; B(E2)(W.u.)=16.0 +49-40 α =0.0001142 18; α (K)=0.0001035 16; α (L)=9.41×10 ⁻⁶ 15; α (M)=1.233×10 ⁻⁶ 19

н

						Adopte	d Levels, Gamm	as (continued)
							γ ⁽⁴⁸ V) (contin	ued)
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.	$lpha^{\dagger}$	Comments
								 α(N)=6.44×10⁻⁸ 10 E_γ: weighted average of 976.6 4 from (²⁴Mg,n3pγ) and 977.3 2 from (¹⁶O,pnγ). Mult.,δ: D+Q with δ=-0.34 4 from γ(θ) in (¹⁶O,pnγ); E1+M2 with this δ value is ruled out by RUL; stretched dipole (ΔJ=1) from anisotropy in (⁴⁰Ca,2pγ).
2231.49	8+	1604.1 4	85 6	627.21	6+	(E2)	0.0001791 25	B(E2)(W.u.)=11.0 +22-17 α=0.0001791 25; α(K)=4.41×10 ⁻⁵ 6; α(L)=4.01×10 ⁻⁶ 6; α(M)=5.25×10 ⁻⁷ 7 α(N)=2.74×10 ⁻⁸ 4; α(IPF)=0.0001304 18 E _γ : weighted average of 1604.2 4 from (²⁴ Mg,n3pγ) and 1603.4 15 from (¹⁶ O,pnγ). I _γ : other: I(1604γ)/I(977γ)=100/75 from (⁴⁰ Ca,2pγ). Mult.: stretched (ΔJ=2) quadrupole or ΔJ=0 dipole from angular anisotropy in (⁴⁰ Ca,2pγ); M2 ruled out by RUL; Δπ=no from level scheme.
2289.0 2338.1	1 ⁺ (3,4 ⁺)	1981 6 1216.5 [#] 40 1236 [#] 1724.5 [#] 30	69 [#] 13 100 [#] 17	308.29 1120.5 1099.17 613.36	2 ⁺ (2,3,4) ⁺ 4 ⁻ 4 ⁺			E_{γ} : from (³ He,p γ) only.
2398.31	6-	2031 [#] 4 712.4 4	33 [#] 17 100.0 17	308.29 1685.58	2+ 5 ⁽⁻⁾	(M1)	0.0002095 29	B(M1)(W.u.)=0.208 +23-19 α =0.0002095 29; α (K)=0.0001898 27; α (L)=1.730×10 ⁻⁵ 24; α (M)=2.267×10 ⁻⁶ 32 α (N)=1.183×10 ⁻⁷ 17 E _γ : other: 712.7 10 from (¹⁶ O,pnγ). Mult.: stretched dipole (Δ J=1) from γ anisotropy in (⁴⁰ Ca,2pγ); $\Delta\pi$ =no
		1299.3 4	7.9 15	1099.17	4-	[E2]	0.0001040 15	Trom level scheme. $B(E2)(W.u.)=4.0 + 9 - 8$ $\alpha=0.0001040 \ 15; \ \alpha(K)=6.83\times10^{-5} \ 10; \ \alpha(L)=6.21\times10^{-6} \ 9;$ $\alpha(M)=8.14\times10^{-7} \ 11$ $\alpha(N)=4.24\times10^{-8} \ 6; \ \alpha(IPE)=2.87\times10^{-5} \ 4$
		1771.2 4	7.6 13	627.21	6+	(E1)	0.000495 7	B(E1)(W.u.)=2.39×10 ⁻⁵ +49-43 α =0.000495 7; α (K)=2.036×10 ⁻⁵ 29; α (L)=1.842×10 ⁻⁶ 26; α (M)=2.413×10 ⁻⁷ 34 α (N)=1.263×10 ⁻⁸ 18; α (IPF)=0.000473 7 Mult.: γ anisotropy from (⁴⁰ Ca,2p γ) suggests dipole, Δ J=0; $\Delta\pi$ =yes from level scheme.
		1969 ^{&}	16.4	427.89	5+	[E1]	0.000637 9	B(E1)(W.u.)= $3.8 \times 10^{-5} 8$ $\alpha = 0.000637 9$; α (K)= $1.736 \times 10^{-5} 24$; α (L)= $1.570 \times 10^{-6} 22$;

⁴⁸₂₃V₂₅-23

					Ad	opted Levels	, Gammas	(continued)	
						γ (⁴⁸ V) (continue	d)	
E _i (level)	J_i^π	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.	δ	α^{\dagger}	Comments
					<u> </u>				$\alpha(M)=2.058\times10^{-7} 29$
2408.2	1+	1989 6 2098 6		420.69	$1^+_{2^+}$				$a(N)=1.077\times10^{-7}13; a(PP)=0.000017.9$ E _y : from (³ He,py) only. E : from (³ He m) only.
2447.4	$(2^+, 3^-)$	1388 [#] 3	100 [#] 31	1055.83	2 3 ⁻				L_{γ} . Hold (He,py) only.
	()-)	1837 [#] 3	94 [#] 38	613.36	4+				
		1926 [#] 4	81 ^{#} 38	518.65	1-				
		2451 [#] 4	≈50 [#]	0.0	4+				
2471.8	(2,3)-	1955 [#] 4	≈4.1 [#]	518.65	1-				
		2159.0 [#] 35	100 [#] 34	308.29	2^{+}				
2495.3	(3 ⁺ ,4,5 ⁻)	1439 [#] 3	89 <mark>#</mark> 26	1055.83	3-				
		2072# 4	68 [#] 32	427.89	5+				
		2493 [#] 3	100 [#] 32	0.0	4+				
2604.7	$(2^+, 3, 4^+)$	913.0 [#] 25	59 # 24	1691.5	$(2^+, 3^-)$				
		1986.0 ^{#&} 35	#	613.36	4+				
		$2300^{#} 4$	100 [#] 47	308.29	2+				
2626.2	0+	$2600^{#} 5$	≈47 "	0.0	4 ⁺ 0+	M1 + E2	0.08.5	0 000767 18	$P(M1)(W_{11}) = 0.286 + 40.20; P(E2)(W_{11}) = 20 + 51.22$
2020.3	9.	394.8 2	82 0	2231.49	8.	MI+E2	-0.08 5	0.000767-18	B(M1)(W.u.)=0.286 +49-39; B(E2)(W.u.)=29 +51-22 α =0.000767 18; α (K)=0.000694 16; α (L)=6.37×10 ⁻⁵ 15; α (M)=8.34×10 ⁻⁶ 20 α (N)=4.33×10 ⁻⁷ 10 E _{γ} : from (¹⁶ O,pn γ). Other: 394.9 4 from (²⁴ Mg,n3p γ). I _{γ} : from (²⁴ Mg,n3p γ). Other: 49 from (⁴⁰ Ca,2p γ). Mult., δ : D+Q from $\gamma(\theta)$ in (¹⁶ O,pn γ); E1+M2 with the size α for α the P(α) set the P(α).
		1371.7 3	100 6	1254.48	7+	E2(+M3)	-0.05 8	0.0001140 21	B(E2)(W.u.)=11.0 +27-21 α =0.0001140 21; α (K)=6.11×10 ⁻⁵ 20; α (L)=5.56×10 ⁻⁶ 18; α (M)=7.28×10 ⁻⁷ 24 α (N)=3.80×10 ⁻⁸ 12; α (IPF)=4.65×10 ⁻⁵ 9 E _{γ} : weighted average of 1371.4 4 from (²⁴ Mg,n3p γ) and 1371.9 3 from (¹⁶ O,pn γ). I _{γ} : from (²⁴ Mg,n3p γ). Mult., δ : Q(+O) from $\gamma(\theta)$ in (¹⁶ O,pn γ); M2(+E3) ruled out by RUL. Other: γ anisotropy from (⁴⁰ O ₂ 2m γ) consistent with Δ LeO on Δ L=2
2703.2	(7^{+})	953 1	100 10	1750.2	(6^{+})				(^{+o} Ca,2p γ) consistent with $\Delta J=0$ or $\Delta J=2$.
2103.2	(r)	1438 <mark>&</mark>	<95	1264 53	5 ⁺				
		1448 ^{&} 1	17.6	1254.48	2 7 ⁺				

${}^{48}_{23}\mathrm{V}_{25}$ -24

From ENSDF

 ${}^{48}_{23}\mathrm{V}_{25}$ -24

$\gamma(^{48}V)$ (continued)

E _i (level)	J_i^π	${\rm E_{\gamma}}^{\ddagger}$	I_{γ}^{\ddagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	α^{\dagger}	Comments
2703.2	(7^{+})	2076 1	41 8	627.21 6+			
2770.14		2275 [°]	<9.5	$427.89 5^+$		0.0000007.00	
2779.14	(6 ⁻)	/1/.1 4	100 7	2062.16 5(-)	(M1)	0.0002067 29	B(M1)(W.u.)=0.220 +40-29 α =0.0002067 29; α(K)=0.0001873 26; α(L)=1.706×10 ⁻⁵ 24; α(M)=2.236×10 ⁻⁶ 31 α(N)=1.167×10 ⁻⁷ 16 E _γ ,I _γ : other: 716.9 10 with Iγ=100 15 from (¹⁶ O,pnγ). Mult.: (D), ΔJ=(1) from γ anisotropy in (¹⁶ O,pnγ);
						_	$\Delta \pi = (no)$ from level scheme.
		1221.1 3	40 7	1557.58 4-	(E2)	9.89×10 ⁻⁵ 14	 B(E2)(W.u.)=30 6 α=9.89×10⁻⁵ 14; α(K)=7.83×10⁻⁵ 11; α(L)=7.12×10⁻⁶ 10; α(M)=9.33×10⁻⁷ 13 α(N)=4.86×10⁻⁸ 7; α(IPF)=1.253×10⁻⁵ 18 E_γ: other: 1221.8 15 from (¹⁶O,pnγ). I_γ: weighted average of 39 7 from (²⁴Mg,n3pγ) and 45 15 from (¹⁶O,pnγ). Mult.: (Q), ΔJ=(2) from γ anisotropy in (¹⁶O,pnγ); (M2) ruled out by RUL.
2793.0	$(3,4)^{-}$	1669 [#] 3	100 ^{#} 21	1120.5 (2,3,4)	F		
		2789 [#] 3	83 [#] 33	0.0 4+			
2823.1	(4 ⁻)	2055 [#] 4	100 [#] 53	764.97 3+			
		2825 [#] 4	27 [#] 13	$0.0 4^+$			
3012	$(1^+, 2, 3, 4^+)$	2250 ^{#&} 5	≈12 [#]	764.97 3+			
		2704 [#] 3	≈100 [#]	308.29 2+			
3022.6	0^{+}	2598 6		420.69 1+			E_{γ} : from (³ He,p γ).
3074	$1^+, 2^+, 3^+, 4^+$	2766 [#] 3	100	308.29 2+			
3174.5	(7 ⁻)	775.5 6	100 6	2398.31 6-	(M1)	0.0001758 25	B(M1)(W.u.)= $0.242 + 31-24$ α= $0.0001758 25$; α(K)= $0.0001593 22$; α(L)= 1.451×10^{-5} 20; α(M)= $1.901 \times 10^{-6} 27$ α(N)= $9.93 \times 10^{-8} 14$ E _γ : weighted average of 775.7 4 from (²⁴ Mg,n3pγ) and 774 <i>I</i> from (¹⁶ O,pnγ). Mult.: stretched D from γ anisotropy in (⁴⁰ Ca,2pγ); (M1) from level scheme.
		1489.0 <i>4</i>	31 6	1685.58 5 ⁽⁻⁾	[E2]	0.0001403 20	B(E2)(W.u.)=11.9 23 α =0.0001403 20; α (K)=5.13×10 ⁻⁵ 7; α (L)=4.66×10 ⁻⁶ 7; α (M)=6.10×10 ⁻⁷ 9 α D=2.10 10 ⁻⁸ 4 α (DE) 0.27 10 ⁻⁵ 12
		2547.4 6	9.16 28	627.21 6+	[E1]	1.00×10 ⁻³ 1	$\begin{aligned} \alpha(N) &= 3.19 \times 10^{-5} 4; \ \alpha(IPF) = 8.5 / \times 10^{-5} 12 \\ B(E1)(W.u.) &= 1.46 \times 10^{-5} + 20 - 16 \\ \alpha(K) &= 1.206 \times 10^{-5} 17; \ \alpha(L) = 1.090 \times 10^{-6} 15; \end{aligned}$

25

 $^{48}_{23}\mathrm{V}_{25}$ -25

					Adoj	oted Levels, Gam	mas (continued)
						$\gamma(^{48}V)$ (con	tinued)
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\ddagger}$	I_{γ} [‡]	$E_f J_f^{\pi}$	Mult.	α^{\dagger}	Comments
							$\alpha(M)=1.428 \times 10^{-7} \ 20$ $\alpha(N)=7.48 \times 10^{-9} \ 10; \ \alpha(IPF)=0.000989 \ 14$ I _y : other: 40 from (⁴⁰ Ca,2py).
3210.2	(8 ⁺)	507 <i>1</i>	72 15	2703.2 (7^+)			
		584 I 070&	85 <i>18</i>	2626.3 9 ⁺			
		979 1459 <mark>&</mark>	<20	$2231.49 \ 8$ 1750 2 (6 ⁺)			
		1955 1	100 18	1254.48 7 ⁺			
3243.4	$(2)^{+}$	2725 [#] 3	≈83 [#]	518.65 1-			
		3243 [#] 3	100 [#] 50	0.0 4+			
3423.3	(7 ⁻)	643.6 4	100 17	2779.14 (6 ⁻)	[M1+E2]	3.5×10 ⁻⁴ 10	B(M1)(W.u.)=0.22 +7-5 (if pure M1) α =3.5×10 ⁻⁴ 10; α (K)=3.2×10 ⁻⁴ 9; α (L)=2.9×10 ⁻⁵ 8; α (M)=3.8×10 ⁻⁶ 10 α (N)=2.0×10 ⁻⁷ 5
							E_{γ} : other: 643.7 <i>10</i> from (¹⁰ O,pn γ). Mult : pure E2 ruled out by PUI
		1026.1 6	100 17	2398.31 6-	[M1,E2]	0.000115 15	B(M1)(W.u.)=0.054 + 17 - 12 (if pure M1); $B(E2)(W.u.)=127 + 39 - 27$
							(if pure E2)
							$\alpha = 0.000115 \ I5; \ \alpha(\text{K}) = 0.000104 \ I3; \ \alpha(\text{L}) = 9.5 \times 10^{-6} \ I2;$
							$\alpha(M) = 1.24 \times 10^{-10}$ $\alpha(N) = 6.5 \times 10^{-8} 8$
		1362.0 5	86 14	2062.16 5 ⁽⁻⁾	[E2]	0.0001122 16	B(E2)(W.u.)=27 + 8-6
							α =0.0001122 <i>16</i> ; α (K)=6.18×10 ⁻⁵ <i>9</i> ; α (L)=5.61×10 ⁻⁶ <i>8</i> ;
							$\alpha(M) = 7.35 \times 10^{-7} \ 10$
		# -	#				$\alpha(N)=3.84\times10^{-6}$ 5; $\alpha(IPF)=4.41\times10^{-3}$ 6
3565	(3,4)+	3137 " 5	75 [#] 38	427.89 5+			
2702	1+	3365" 3	100" 50	$0.0 4^{+}$			$\mathbf{E} \cdot \mathbf{from} \left(\frac{3}{10} \mathbf{Ho} \mathbf{p} \mathbf{r} \right)$
3866	1 1+	3394 0 3445 6		420.69 1 ⁺			E_{γ} . from (³ He py). E : from (³ He py)
5000	1	3558 6		$308.29 2^+$			$F_{\alpha'}$: from (³ He, py).
3981.0	(8-)	558 1	3.1 9	3423.3 (7 ⁻)	[M1,E2]	5.2×10 ⁻⁴ 17	B(M1)(W.u.)= $0.0135 + 47 - 41$ (if pure M1); B(E2)(W.u.)= $107 + 37 - 33$ (if pure E2)
							$\alpha = 5.2 \times 10^{-4} \ 17; \ \alpha(K) = 4.7 \times 10^{-4} \ 15; \ \alpha(L) = 4.3 \times 10^{-5} \ 14;$ $\alpha(M) = 5.7 \times 10^{-6} \ 19$ $\alpha(N) = 2.9 \times 10^{-7} \ 9$
		806 4 4	100.7	3174.5 (7 ⁻)	(M1)	0 0001624 23	$E_{\gamma,I_{\gamma}}$: Irom (~'Mg,n3p γ). B(M1)(Wu)=0.144 +25-19
		000.17	100 /		(1744)	5.000102125	$\alpha = 0.0001624 \ 23; \ \alpha(K) = 0.0001471 \ 21; \ \alpha(L) = 1.339 \times 10^{-5} \ 19; \alpha(M) = 1.755 \times 10^{-6} \ 25 \alpha(N) = 9.17 \times 10^{-8} \ 13$

From ENSDF

 $^{48}_{23}\mathrm{V}_{25}$ -26

						Ado	pted Lev	vels, Gammas (co	ontinued)
							$\gamma(2$	⁴⁸ V) (continued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_{f}	J_f^{π}	Mult.	δ	α^{\dagger}	Comments
		<u> </u>	,		<u></u>				E_{γ} , I_{γ} : from (²⁴ Mg, n3pγ). Other: 806.6 <i>10</i> from (¹⁶ O, pnγ). Mult.: stretched dipole from γ anisotropy in (⁴⁰ Ca, 2pγ) and (¹⁶ O, pnγ); $\Delta \pi$ =(no) from level scheme.
3981.0	(8-)	1349 ^{&}	11.8	2626.3	9+	[E1]		0.0001888 26	B(E1)(W.u.)= $8.4 \times 10^{-5} + 22 - 19$ α =0.0001888 26; α (K)= 3.16×10^{-5} 4; α (L)= 2.86×10^{-6} 4; α (M)= 3.75×10^{-7} 5 α (N)= 1.958×10^{-8} 27; α (IPF)= 0.0001540 22
		1582.3 4	44 6	2398.31	6-	(E2)		0.0001711 24	E _γ ,I _γ : from (⁴⁰ Ca,2pγ) only; level-energy difference=1354.7. B(E2)(W.u.)=8.3 +17-14 α =0.0001711 24; α (K)=4.54×10 ⁻⁵ 6; α (L)=4.12×10 ⁻⁶ 6; α (M)=5.39×10 ⁻⁷ 8 α (N)=2.82×10 ⁻⁸ 4; α (IPF)=0.0001210 17 E _γ ,I _γ : other: 1588 with Iγ=50 from (⁴⁰ Ca,2pγ). Mult.: stretched (Δ J=2) quadrupole or Δ J=0 dipole from angular anisotropy in (⁴⁰ ca,2pγ); M2 ruled out by RUL; $\Delta\pi$ =(no) from
		1744 ^{&}	33	2231.49	8+	[E1]		0.000475 7	level scheme. $B(E1)(W.u.)=1.09\times10^{-4} +27-23$ $\alpha=0.000475 \ 7; \ \alpha(K)=2.084\times10^{-5} \ 29; \ \alpha(L)=1.886\times10^{-6} \ 26;$ $\alpha(M)=2.471\times10^{-7} \ 35$ $\alpha(N)=1.293\times10^{-8} \ 18; \ \alpha(IPF)=0.000452 \ 6$
4073.4	(8-)	898.9 <i>5</i>	100 8	3174.5	(7-)	[M1+E2]		0.000155 25	E _γ ,I _γ : from (⁴⁰ Ca,2pγ) only; level-energy difference=1749.5. B(M1)(W.u.)=0.19 +8-5 (if pure M1) α =0.000155 25; α (K)=0.000140 22; α (L)=1.28×10 ⁻⁵ 21; α (M)=1.68×10 ⁻⁶ 27 α (N)=8.7×10 ⁻⁸ 14
		1676 <i>1</i>	61 8	2398.31	6-	[E2]		0.0002064 29	Mult.: pure E2 ruled out by RUL. B(E2)(W.u.)=16 +7-4 α =0.0002064 29; α (K)=4.05×10 ⁻⁵ 6; α (L)=3.67×10 ⁻⁶ 5; α (M)=4.81×10 ⁻⁷ 7 α (N)=2.516×10 ⁻⁸ 35; α (IPF)=0.0001618 23
4150.1	(10+)	941 ^{&} 1523.5 8	<2.6 100 7	3210.2 2626.3	(8 ⁺) 9 ⁺				 E_γ: other: 1523.5 <i>16</i> from (¹⁶O,pnγ). Mult.: (Q) from γ anisotropy in (¹⁶O,pnγ) for 1523.5γ, placed from a 3586, (7⁻) level which is only tentatively proposed by 1974Ta15. But the level scheme here gives ΔJ=1.
4306.8	(11+)	1918.5 8 157.0 4	28 / 3.1 6	4150.1	8' (10 ⁺)	[M1+E2]	<0.1	0.00723 31	B(M1)(W.u.)=0.47 +17-14 α (K)=0.00654 28; α (L)=0.000609 27; α (M)=7.98×10 ⁻⁵ 35 α (N)=4.08×10 ⁻⁶ 17 δ : estimated from RUL=300 for B(E2)(W.u.).
		1680.4 4	100.0 6	2626.3	9+	(E2)		0.0002081 29	B(E2)(W.u.)=11.0 + 14 - 11

 $^{48}_{23}\mathrm{V_{25}\text{--}27}$

						Ad	lopted Levels, Ga	ammas (continued)
							γ (⁴⁸ V) (c	ontinued)
E _i (level)	\mathbf{J}_i^{π}	Eγ‡	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments
					<u> </u>			α =0.0002081 29; α (K)=4.03×10 ⁻⁵ 6; α (L)=3.65×10 ⁻⁶ 5; α (M)=4.79×10 ⁻⁷ 7 α (N)=2.503×10 ⁻⁸ 35; α (IPF)=0.0001637 23 E _{γ} : weighted average of 1680.3 4 from (²⁴ Mg,n3p γ) and 1680.5 6
4360.6	(8 ⁻)	937.4 6	100 11	3423.3	(7-)	[M1+E2]	0.000141 21	from (¹⁶ O,pn γ). Mult.: $\Delta J=0$ or stretched quadrupole ($\Delta J=2$) from γ anisotropy in (⁴⁰ Ca,2p γ) and $\gamma(\theta)$ in (²⁷ Al,3n3p γ); M2 ruled out by RUL; $\Delta \pi=(no)$ from level scheme. B(M1)(W.u.)=0.17 +9-5 (if pure M1) $\alpha=0.000141 \ 21$; $\alpha(K)=0.000127 \ 19$; $\alpha(L)=1.16\times10^{-5} \ 17$; $\alpha(M)=1.52\times10^{-6} \ 23$
		1581.3 6	85 11	2779.14	(6 ⁻)	[E2]	0.0001707 24	$\alpha(M) = 7.9 \times 10^{-8} I2$ Mult.: pure E2 ruled out by RUL. B(E2)(W.u.)=31 +16-8 α =0.0001707 24; α (K)=4.54×10 ⁻⁵ 6; α (L)=4.12×10 ⁻⁶ 6; α (M)=5.40×10 ⁻⁷ 8 (DE) = 0.0001006 17
4368.3	(9+)	1158 <i>1</i> 1665 ^{&} 1742 <i>1</i>	100 <i>13</i> <18.2 82 <i>13</i>	3210.2 2703.2 2626.3	(8^+) (7^+) 9^+			$\alpha(N)=2.82\times10^{-6}$ 4; $\alpha(IPF)=0.0001206$ 17
4395.8	(9 ⁻)	323 1	<27 94	4073.4	8' (8 ⁻)	[M1+E2]	0.0028 16	B(M1)(W.u.)=0.036 +17-15 (if pure M1) α (K)=0.0025 14; α (L)=2.3×10 ⁻⁴ 13; α (M)=3.0×10 ⁻⁵ 17 α (N)=1.5×10 ⁻⁶ 9
		414.5 <i>4</i>	100 7	3981.0	(8 ⁻)	(M1)	0.000679 <i>10</i>	Mult.: pure E2 ruled out by ROL. B(M1)(W.u.)=0.187 +34-28 α =0.000679 10; α (K)=0.000615 9; α (L)=5.63×10 ⁻⁵ 8; α (M)=7.38×10 ⁻⁶ 10 α (N)=3.84×10 ⁻⁷ 5 Mult.: stratched dipole (AL=1) from α anisotropy in (⁴⁰ Ca 2ma):
		1185.4 5	1.2 5	3210.2	(8+)	[E1]	8.88×10 ⁻⁵ 13	Δπ=(no) from level scheme. B(E1)(W.u.)=2.2×10 ⁻⁶ +11-9 α =8.88×10 ⁻⁵ 13; α(K)=3.96×10 ⁻⁵ 6; α(L)=3.59×10 ⁻⁶ 5; α(M)=4.70×10 ⁻⁷ 7
		1222 &	<8.8	3174.5	(7-)	[E2]	9.90×10 ⁻⁵ 14	$\alpha(N)=2.453\times10^{-6} \ 34; \ \alpha(IPF)=4.52\times10^{-5} \ 7$ B(E2)(W.u.)=0.5 +8-5 $\alpha=9.90\times10^{-5} \ 14; \ \alpha(K)=7.82\times10^{-5} \ 11; \ \alpha(L)=7.11\times10^{-6} \ 10; \alpha(M)=9.32\times10^{-7} \ 13$ $\alpha(N)=4.86\times10^{-8} \ 7; \ \alpha(IPF)=1.269\times10^{-5} \ 18$
		1769.3 4	62 5	2626.3	9+	[E1]	0.000494 7	I _y : other: 31 from (⁴⁰ Ca,2pγ). B(E1)(W.u.)= $3.5 \times 10^{-5} + 7 - 6$

						Adopted	l Levels, Gamma	s (continued)
							γ ⁽⁴⁸ V) (continu	ued)
E _i (level)	\mathbf{J}_i^π	${\rm E_{\gamma}}^{\ddagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^π	Mult.	α^{\dagger}	Comments
4395.8	(9 ⁻)	2164.4 4	6.7 16	2231.49	8+	[E1]	0.000769 11	$\begin{aligned} &\alpha = 0.000494 \ 7; \ \alpha(\text{K}) = 2.039 \times 10^{-5} \ 29; \ \alpha(\text{L}) = 1.845 \times 10^{-6} \ 26; \\ &\alpha(\text{M}) = 2.417 \times 10^{-7} \ 34 \\ &\alpha(\text{N}) = 1.265 \times 10^{-8} \ 18; \ \alpha(\text{IPF}) = 0.000471 \ 7 \\ &\text{B(E1)(W.u.)} = 2.1 \times 10^{-6} \ 6 \\ &\alpha = 0.000769 \ 11; \ \alpha(\text{K}) = 1.514 \times 10^{-5} \ 21; \ \alpha(\text{L}) = 1.368 \times 10^{-6} \ 19; \\ &\alpha(\text{M}) = 1.793 \times 10^{-7} \ 25 \end{aligned}$
4581.0	(9 ⁻)	507.7 4	59 12	4073.4	(8-)	[M1+E2]	6.8×10 ⁻⁴ 25	$\alpha(N)=9.39\times10^{-9} \ 13; \ \alpha(IPF)=0.000753 \ 11$ B(M1)(W.u.)=0.086 +19-17 (if pure M1) $\alpha=6.8\times10^{-4} \ 25; \ \alpha(K)=6.2\times10^{-4} \ 23; \ \alpha(L)=5.7\times10^{-5} \ 21; \ \alpha(M)=7.4\times10^{-6} \ 27 \ \alpha(N)=3.8\times10^{-7} \ 14$
		600.0 4	79 12	3981.0	(8-)	[M1+E2]	4.3×10 ⁻⁴ 13	Mult.: pure E2 ruled out by RUL. B(M1)(W.u.)=0.070 +13-11 (if pure M1) α =4.3×10 ⁻⁴ 13; α (K)=3.9×10 ⁻⁴ 11; α (L)=3.5×10 ⁻⁵ 11; α (M)=4.6×10 ⁻⁶ 14 α (N)=2.4×10 ⁻⁷ 7
		1158.2 5	7.9 18	3423.3	(7 ⁻)	[E2]	0.0001015 14	Mult.: pure E2 ruled out by KUL. B(E2)(W.u.)=1.79 +50-44 α =0.0001015 14; α (K)=8.82×10 ⁻⁵ 12; α (L)=8.03×10 ⁻⁶ 11; α (M)=1.052×10 ⁻⁶ 15 α (N)=5.48×10 ⁻⁸ 8; α (IPF)=4.16×10 ⁻⁶ 7
		1406.4 5	100 15	3174.5	(7-)	[E2]	0.0001200 17	B(E2)(W.u.)=8.6 +15-13 α =0.0001200 17; α (K)=5.77×10 ⁻⁵ 8; α (L)=5.24×10 ⁻⁶ 7; α (M)=6.87×10 ⁻⁷ 10 α (N)=3.59×10 ⁻⁸ 5; α (IPF)=5.63×10 ⁻⁵ 8
		2349.5 6	50 12	2231.49	8+	[E1]	0.000887 12	B(E1)(W.u.)=1.71×10 ⁻⁵ 41 α =0.000887 12; α (K)=1.348×10 ⁻⁵ 19; α (L)=1.218×10 ⁻⁶ 17; α (M)=1.596×10 ⁻⁷ 22 α (N)=8.36×10 ⁻⁹ 12; α (IPF)=0.000873 12
4674.9? 4684 4781	1+ 1+	$2048^{\&} \\ 4368^{@\&} 6 \\ 4368^{@\&} 6$		2626.3 308.29 420.69	9 ⁺ 2 ⁺ 1 ⁺			E_{γ} : from (²⁷ Al,3n3p γ) only. E_{γ} : from (³ He,p γ) only. E_{γ} : from (³ He,p γ) only.
4968.8	(10 ⁺)	601 & 662 <i>I</i> 818 <i>I</i> 1759 & 2343 <i>I</i>	<7.0 5.8 23 10.5 23 <7.0 100 11	4368.3 4306.8 4150.1 3210.2 2626.3	$(9^+) (11^+) (10^+) (8^+) 9^+$			
5204.0	(10 ⁻)	623 ^{&}	<5.3	4581.0	(9 ⁻)	[M1,E2]	3.9×10 ⁻⁴ 11	B(M1)(W.u.)<0.022 (if pure M1); B(E2)(W.u.)<139 (if pure E2) α =3.9×10 ⁻⁴ 11; α (K)=3.5×10 ⁻⁴ 10; α (L)=3.2×10 ⁻⁵ 9;

$\gamma(^{48}V)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E _f J	Mult.	α^{\dagger}	Comments
5204.0	(10 ⁻)	807.9 5	100.0 21	4395.8 (9-) [M1+E2]	0.00020 4	$\alpha(M)=4.2\times10^{-6} \ 12$ $\alpha(N)=2.2\times10^{-7} \ 6$ B(M1)(W.u.)=0.132 +43-27 (if pure M1) $\alpha=0.00020 \ 4; \ \alpha(K)=0.000181 \ 34; \ \alpha(L)=1.65\times10^{-5} \ 32; \ \alpha(M)=2.2\times10^{-6} \ 4$
		1132 &	<5.3	4073.4 (8-) [E2]	0.0001048 15	Mult.: pure E2 ruled out by RUL. B(E2)(W.u.)=2.5 +46-25 α =0.0001048 15; α (K)=9.30×10 ⁻⁵ 13; α (L)=8.46×10 ⁻⁶ 12; α (M)=1.108×10 ⁻⁶ 16
		1224 ^{&}	<5.3	3981.0 (8-) [E2]	9.90×10 ⁻⁵ 14	$\alpha(N)=5.77\times10^{-8} 8; \ \alpha(IPF)=2.252\times10^{-6} 32$ B(E2)(W.u.)=1.7 +31-17 $\alpha=9.90\times10^{-5} 14; \ \alpha(K)=7.79\times10^{-5} 11; \ \alpha(L)=7.09\times10^{-6} 10;$ $\alpha(M)=9.28\times10^{-7} 13$
		2578 1	5.3 21	2626.3 9+	[E1]	1.02×10 ⁻³ 1	$\alpha(M) = 3.28 \times 10^{-113}$ $\alpha(N) = 4.84 \times 10^{-8} 7; \ \alpha(IPF) = 1.304 \times 10^{-5} 18$ $B(E1)(W.u.) = 5.0 \times 10^{-6} + 26 - 20$ $\alpha(K) = 1.186 \times 10^{-5} 17; \ \alpha(L) = 1.072 \times 10^{-6} 15; \ \alpha(M) = 1.405 \times 10^{-7} 20$ $\alpha(N) = 7.36 \times 10^{-9} 10; \ \alpha(IPF) = 0.001007 14$
5568.7	(11+)	600 <i>I</i> 1201 ^{&} 1262 <i>I</i>	33 <i>10</i> <8.3 100 <i>13</i> 22 10	4968.8 (10 4368.3 (9 ⁴ 4306.8 (11 4150.1 (10	+)) +)		a(n)=7.50×10 10, a(n1)=0.001007 14
5897.8	(11 ⁻)	693.4 8	55 10 24 6	4130.1 (10 5204.0 (10) -) [M1,E2]	0.00029 7	B(M1)(W.u.)=0.0142 +39-36 (if pure M1); B(E2)(W.u.)=73 +20-19 (if pure E2) α =0.00029 7; α (K)=0.00026 6; α (L)=2.4×10 ⁻⁵ 6; α (M)=3.2×10 ⁻⁶ 8
		929 1	36 7	4968.8 (10	+) [E1]	6.92×10 ⁻⁵ 10	$\begin{aligned} &\alpha(N) = 1.6 \times 10^{-4} & 4 \\ &B(E1)(W.u.) = 2.06 \times 10^{-4} + 48 - 41 \\ &\alpha = 6.92 \times 10^{-5} & 10; \ \alpha(K) = 6.27 \times 10^{-5} & 9; \ \alpha(L) = 5.69 \times 10^{-6} & 8; \\ &\alpha(M) = 7.45 \times 10^{-7} & 11 \end{aligned}$
		1317.0 4	100 13	4581.0 (9-) [E2]	0.0001060 15	$\begin{array}{l} \alpha(\mathrm{N})=3.89\times10^{-8}\ 6\\ \mathrm{B(E2)(W.u.)}=12.3\ +19-16\\ \alpha=0.0001060\ 15;\ \alpha(\mathrm{K})=6.64\times10^{-5}\ 9;\ \alpha(\mathrm{L})=6.03\times10^{-6}\ 8;\\ \alpha(\mathrm{M})=7.90\times10^{-7}\ 11 \end{array}$
		1502 <i>1</i>	11 4	4395.8 (9-) [E2]	0.0001442 20	$\begin{aligned} \alpha(\text{N}) = 4.12 \times 10^{-8} \ 6; \ \alpha(\text{IPF}) = 3.28 \times 10^{-5} \ 5 \\ \text{B}(\text{E2})(\text{W.u.}) = 0.70 \ +28 - 25 \\ \alpha = 0.0001442 \ 20; \ \alpha(\text{K}) = 5.04 \times 10^{-5} \ 7; \ \alpha(\text{L}) = 4.57 \times 10^{-6} \ 6; \\ \alpha(\text{M}) = 5.99 \times 10^{-7} \ 8 \end{aligned}$
		1747 <i>1</i>	9.1 <i>16</i>	4150.1 (10	+) [E1]	0.000478 7	$\begin{aligned} &\alpha(\text{N})=3.13\times10^{-8} \ 4; \ \alpha(\text{IPF})=8.86\times10^{-5} \ 13\\ &\text{B(E1)(W.u.)}=7.8\times10^{-6} \ +19-16\\ &\alpha=0.000478 \ 7; \ \alpha(\text{K})=2.079\times10^{-5} \ 29; \ \alpha(\text{L})=1.881\times10^{-6} \ 26; \end{aligned}$

30

 $^{48}_{23}\mathrm{V_{25}}\text{--}30$

					A	dopted Levels, (Sammas (continued)
						$\gamma(^{48}V)$ ((continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$E_f J_f^{\pi}$	Mult.	α^{\dagger}	Comments
							$\alpha(M) = 2.465 \times 10^{-7} 35$
6214.7	(12^{+})	646.0.8	24.8	5568.7 (11 ⁺)			$\alpha(N)=1.290\times10^{-6}$ 18; $\alpha(IPF)=0.000455$ 6
	()	1246	< 3.7	4968.8 (10+)			
		1908.4.8	100 11	$4306.8 (11^+)$			
		2064.0 8	61 11	4150.1 (10 ⁺)			
6243.4	(13 ⁺)	28 ^{&}	<3.0	6214.7 (12 ⁺)	[M1]	0.738 10	α (K)=0.665 9; α (L)=0.0645 9; α (M)=0.00842 12 α (N)=0.000419 6
		674 <mark>&</mark>	<3.0	5568.7 (11+)	[E2]	0.000393 5	B(E2)(W.u.)=29 + 40 - 29
							$\alpha = 0.000393 5; \alpha(K) = 0.000356 5; \alpha(L) = 3.26 \times 10^{-5} 5; \alpha(M) = 4.26 \times 10^{-6} 6$
							$\alpha(N)=2.201\times10^{-7}$ 31
		1937 <i>1</i>	100	4306.8 (11+)	(E2)	0.000317 4	B(E2)(W.u.)=9.9 + 16 - 14
							α =0.000317 4; α (K)=3.08×10 ⁻⁵ 4; α (L)=2.79×10 ⁻⁶ 4; α (M)=3.65×10 ⁻⁷ 5
							α (N)=1.911×10 ⁻⁸ 27; α (IPF)=0.000283 4
							Mult.: $\Delta J=0$ or stretched quadrupole ($\Delta J=2$) from γ anisotropy in
		0					(⁴⁰ Ca,2p γ) and $\gamma(\theta)$ in (²⁷ Al,3n3p γ); M2 ruled out by RUL; $\Delta \pi$ =(no) from level scheme.
7334.0	(12 ⁻)	1437	<10.0	5897.8 (11 ⁻)	[M1,E2]	0.000114 13	B(M1)(W.u.)<0.007 (if pure M1); B(E2)(W.u.)<8.4 (if pure E2)
							$\alpha = 0.000114 \ 13; \ \alpha(\text{K}) = 5.17 \times 10^{-5} \ 35; \ \alpha(\text{L}) = 4.69 \times 10^{-6} \ 33;$
							$\alpha(M) = 6.1 \times 10^{-7} 4$
		0 100 1	100	5004.0 (10-)	(120)	0.000.407.7	$\alpha(N)=3.22\times10^{-8} 22; \ \alpha(IPF)=5.7\times10^{-5} 9$
		2130 1	100	5204.0 (10 ⁻)	[E2]	0.000406 6	B(E2)(W.u.) = 10.1 + 23 - 16
							$\alpha = 0.000406 \ 6; \ \alpha(\text{K}) = 2.59 \times 10^{-5} \ 4; \ \alpha(\text{L}) = 2.344 \times 10^{-6} \ 33;$
							$\alpha(M) = 3.0 \times 10^{-8} 22$, (DE) 0.000277.5
7334 8	(12^{+})	1002 1	22.6	$62434(13^{+})$			$\alpha(N)=1.008\times10^{-2}23; \ \alpha(IPF)=0.0003773$
7554.0	(12)	1110	22 U <0.7	6243.4(13)			
		1766 1	<9.7 100 <i>11</i>	5568.7 (11 ⁺)			
		2365 <mark>&</mark>	<6.0	$4068.8 (10^+)$			
		3028 2	17 4	$4306.8 (10^{+})$			
7044.0	(13^{-})	608 ^{&}	<10	$7334.0 (12^{-})$	[M1 E2]	4.1×10^{-4} 12	B(M1)(Wu) > 0.05 (if pure M1)
7944.0	(15)	000	<4.0	7554.0 (12)	[1411,E2]	4.1×10 12	$\alpha = 4.1 \times 10^{-4} \ 12; \ \alpha(\text{K}) = 3.7 \times 10^{-4} \ 11; \ \alpha(\text{L}) = 3.4 \times 10^{-5} \ 10; \ \alpha(\text{M}) = 4.5 \times 10^{-6} \ 13$
							$\alpha(N)=2.3\times10^{-7}$ 7
		2046 1	100	5897.8 (11-)	[E2]	0.000367 5	B(E2)(W.u.)=16.6 +31-22
							α =0.000367 5; α (K)=2.78×10 ⁻⁵ 4; α (L)=2.521×10 ⁻⁶ 35; α (M)=3.30×10 ⁻⁷ 5
							α (N)=1.729×10 ⁻⁸ 24; α (IPF)=0.000336 5
7973.1	(13 ⁺)	639 1	100 11	7334.8 (12 ⁺)	[M1,E2]	3.6×10 ⁻⁴ 10	$\alpha = 3.6 \times 10^{-4} \ 10; \ \alpha(\text{K}) = 3.3 \times 10^{-4} \ 9; \ \alpha(\text{L}) = 3.0 \times 10^{-5} \ 8; \ \alpha(\text{M}) = 3.9 \times 10^{-6} \ 11 \ \alpha(\text{N}) = 2.0 \times 10^{-7} \ 5$

					Adopt	ted Levels, Gamr	nas (continued)
						γ (⁴⁸ V) (conti	nued)
E _i (level)	\mathbf{J}_i^{π}	E _γ ‡	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	$lpha^\dagger$	Comments
7973.1	(13+)	1730 <i>1</i>	55 9	6243.4 (13 ⁺)	[M1,E2]	0.000205 23	$\alpha = 0.000205 \ 23; \ \alpha(K) = 3.63 \times 10^{-5} \ 18; \ \alpha(L) = 3.29 \times 10^{-6} \ 16; \\ \alpha(M) = 4.32 \times 10^{-7} \ 22 \\ \alpha(M) = 4.32 \times 10^{-7} \ 22 \\ \alpha(M) = 4.32 \times 10^{-8} \ M_{\odot} \ (M) = 0.000164 \ 24 \\ \alpha(M) = 0.000164 \ 24 \ 24 \ 24 \ 24 \ 24 \ 24 \ 24 \ $
		1759 ^{&}	<9.1	6214.7 (12 ⁺)	[M1,E2]	0.000215 24	$\alpha(N) = 2.26 \times 10^{-5} I1; \ \alpha(IPF) = 0.000164 21$ $\alpha = 0.000215 \ 24; \ \alpha(K) = 3.52 \times 10^{-5} \ 17; \ \alpha(L) = 3.19 \times 10^{-6} \ 16;$ $\alpha(M) = 4.19 \times 10^{-7} \ 20$
		2404 1	27 9	5568.7 (11 ⁺)	[E2]	0.000533 7	$\alpha(N)=2.19\times10^{-8} \ 10; \ \alpha(IPF)=0.000176 \ 23$ $\alpha=0.000533 \ 7; \ \alpha(K)=2.094\times10^{-5} \ 29; \ \alpha(L)=1.896\times10^{-6} \ 27;$ $\alpha(M)=2.484\times10^{-7} \ 35$
8286.4?	(15,13)	2045 ^{&}	100	6243.4 (13 ⁺)	D,Q		α (N)=1.301×10 ⁻⁸ <i>18</i> ; α (IPF)=0.000510 7 E _{γ} : from (⁴⁰ Ca,2p γ) only. Mult.: Δ J=0 dipole or Δ J=2 stretched quadrupole from γ
8495.6	(14+)	522.8 8	18 4	7973.1 (13+)	[M1,E2]	6.3×10 ⁻⁴ 22	anisotropy in (40 Ca,2p γ). α =6.3×10 ⁻⁴ 22; α (K)=5.7×10 ⁻⁴ 20; α (L)=5.2×10 ⁻⁵ 19; α (M)=6.8×10 ⁻⁶ 24
		1161 <mark>&</mark>	<3.5	7334.8 (12 ⁺)	[E2]	0.0001012 14	$ \begin{aligned} \alpha(\mathbf{N}) &= 3.5 \times 10^{-7} \ 12 \\ \alpha &= 0.0001012 \ 14; \ \alpha(\mathbf{K}) &= 8.77 \times 10^{-5} \ 12; \ \alpha(\mathbf{L}) &= 7.98 \times 10^{-6} \ 11; \\ \alpha(\mathbf{M}) &= 1.046 \times 10^{-6} \ 15 \end{aligned} $
		2252 1	100 4	6243.4 (13 ⁺)	[M1,E2]	0.00042 4	$\alpha(N)=5.45\times10^{-8} 8; \ \alpha(IPF)=4.41\times10^{-6} 6$ $\alpha=0.00042 4; \ \alpha(K)=2.28\times10^{-5} 8; \ \alpha(L)=2.06\times10^{-6} 7;$ $\alpha(M)=2.70\times10^{-7} 9$ (N)=4.42\times10^{-8} 5 (IPF) = 0.00040 4
		2280 ^{&}	<4.7	6214.7 (12 ⁺)	[E2]	0.000476 7	$\alpha(\text{N})=1.42\times10^{-5} \text{ S; } \alpha(\text{IPF})=0.00040^{-4}$ $\alpha=0.000476^{-7}; \alpha(\text{K})=2.295\times10^{-5} \text{ 32; } \alpha(\text{L})=2.078\times10^{-6} \text{ 29;}$ $\alpha(\text{M})=2.72\times10^{-7} \text{ 4}$
8589.0?	(14)	2344 <mark>&</mark>	100	6243.4 (13 ⁺)	D		α (N)=1.426×10 ⁻⁸ 20; α (IPF)=0.000450 6 E _{γ} : from (⁴⁰ Ca,2p γ) only.
8712.6	(15 ⁺)	217.1 5	13.6 23	8495.6 (14 ⁺)	[M1+E2]	0.011 8	Mult.: stretched dipole ($\Delta J=1$) from γ anisotropy in ($^{40}Ca, 2p\gamma$). B(M1)(W.u.)=2.2 +7-5 (if pure M1) α (K)=0.010 7; α (L)=9.E-4 7; α (M)=1.2×10 ⁻⁴ 9
		739 ^{&}	<3.4	7973.1 (13 ⁺)	[E2]	0.000303 4	$\alpha(N)=6.E-6.4$ Mult.: pure E2 ruled out by RUL. B(E2)(W.u.)<84
							$\begin{aligned} \alpha = 0.000505 \ 4; \ \alpha(\mathbf{K}) = 0.000274 \ 4; \ \alpha(\mathbf{L}) = 2.506 \times 10^{-5} \ 5; \\ \alpha(\mathbf{M}) = 3.28 \times 10^{-6} \ 5 \\ \alpha(\mathbf{N}) = 1.698 \times 10^{-7} \ 24 \end{aligned}$
		2469 1	100.0 23	6243.4 (13 ⁺)	[E2]	0.000564 8	B(E2)(W.u.)=4.4 +13-9 α =0.000564 8; α (K)=2.001×10 ⁻⁵ 28; α (L)=1.811×10 ⁻⁶ 25; α (M)=2.373×10 ⁻⁷ 33 α (N)=1.243×10 ⁻⁸ 17; α (IEE)=0.000541.8
9910.1	(14 ⁻)	1968 <mark>&</mark>	<8.0	7944.0 (13 ⁻)	[M1,E2]	0.000300 31	α (1)-1.245×10 <i>I</i> , α (IF)-0.000541 o α =0.000300 <i>31</i> ; α (K)=2.88×10 ⁻⁵ <i>12</i> ; α (L)=2.61×10 ⁻⁶ <i>11</i> ;

γ (⁴⁸V) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult.	α^{\dagger}	Comments				
9910.1	(14-)	2576 2	100	7334.0	(12 ⁻)	[E2]	0.000613 9	α (M)=3.42×10 ⁻⁷ 14 α (N)=1.79×10 ⁻⁸ 7; α (IPF)=0.000268 30 α =0.000613 9; α (K)=1.863×10 ⁻⁵ 26; α (L)=1.686×10 ⁻⁶ 24; α (M)=2.209×10 ⁻⁷ 31				
10440 5	(15-)	2505 2	100	7044.0	(12-)	[[20]	0.000590.9	$\alpha(N)=1.157 \times 10^{-8}$ 16; $\alpha(IPF)=0.000592$ 8 $\alpha=0.000580$ 8; $\alpha(K)=1.052 \times 10^{-5}$ 27; $\alpha(L)=1.767 \times 10^{-6}$ 25; $\alpha(M)=2.216 \times 10^{-7}$ 22				
10449.3	(13)	2303 2	100	/944.0	(15)	[E2]	0.000380 8	$a = 0.000380$ 8; $a(\mathbf{K}) = 1.932 \times 10^{-27}$; $a(\mathbf{L}) = 1.767 \times 10^{-225}$; $a(\mathbf{M}) = 2.510 \times 10^{-555}$ $a(\mathbf{N}) = 1.213 \times 10^{-8}$ 17: $a(\mathbf{IPF}) = 0.000559$ 8				
12643.7	(16 ⁻)	2194 <i>1</i>	100 40	10449.5	(15 ⁻)							
		2731 ^{&}	<20.0	9910.1	(14 ⁻)							
13281.7	(17-)	3931 638 <i>I</i> 2832 <i>2</i>	100 40 25 13 100 13	8712.6 12643.7 10449.5	(15 ⁺) (16 ⁻) (15 ⁻)							
[†] Addir [‡] From [#] From [@] Multi & Place	 [†] Additional information 1. [‡] From (²⁴Mg,n3pγ) (2002Br42), unless otherwise noted. [#] From (p,γ). [@] Multiply placed. ^{&} Placement of transition in the level scheme is uncertain. 											

 ${}^{48}_{23}V_{25}$

 ${}^{48}_{23}V_{25}$ -35

 $^{48}_{23}\mathrm{V}_{25}$

Adopted Levels, Gammas Legend Level Scheme (continued) Intensities: Relative photon branching from each level $--- \rightarrow \gamma$ Decay (Uncertain) 174 (E1)3 1300 (E1)3 1300 (E1)13 8064 (M1)16 538 (M1, E3)31 (8⁻) <u>3981.0</u> 0.152 ps 21 355 344 1^{+} 3866 1.32.0 (12.3, 12.1, 12.0 (12.3, 14.1, 12.1, 12.0 (10.0, 14.1, 12.1, 10.0 (10.0, 14.1, 12.1, 10.0) (10.0, 14.1, 12.1, 10.0) 3394 + 3137 *6* 1^{+} 3702 35₆₅ (3,4)+ 3565 1489.0 (E2)31 -235 an 100 -³²⁴³ [00 (7^{-}) <u>3423.3</u> 0.132 ps 28 1430 8 ⁵⁶⁴ 85 502 22 20 (2)+ 8 3243.4 $\frac{\overline{(8^+)}}{(7^-)}$ 8 3210.2 3174.5 3074 2301 0.139 ps 14 ŝ 1+,2+,3+,4+ 0^{+} 3022.6 $\frac{(6^{-})}{(7^{+})}$ 2779.14 0.194 ps 28 2703.2 0.56 ps 8 9^{+} 2626.3 2398.31 0.222 ps 21 6-8+ 2231.49 0.215 ps 35 5(-) 2062.16 0.76 ps 21 1750.2 1685.58 (6+) 5(-) 0.60 ps 7 1254.48 0.41 ps 10 7+ 6+ 627.21 76 ps 6 2.72 ns 6 6.4 ps 10 <135 ps 518.65 $\frac{1^{-}}{5^{+}}$ V 427.89 420.69 308.29 7.11 ns 4 0.0 15.974 d 3 4^{-1}

 $^{48}_{23}\mathrm{V}_{25}$

Adopted Levels, Gammas

Legend

Level Scheme (continued)

 ${}^{48}_{23}V_{25}$

Adopted Levels, Gammas

 ${}^{48}_{23}\mathrm{V}_{25}$

 ${}^{48}_{23}V_{25}$