27 Al(27 Al,3n3p γ), 40 Ca(14 N,2n4p γ) 1991Ca30

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 179, 1 (2022)	30-Nov-2021

1991Ca30 do not differentiate the data from the two reactions. 1991Ca30: E=90 MeV 27 Al and E=40 MeV 14 N beams were produced from the McMaster University FN Tandem accelerator on 1 mg/cm² elemental Ca and Al targets on ²⁰⁸Pb backings, respectively. γ rays were detected with Ge detectors. Measured E γ , $\gamma\gamma$ -coin, $\gamma(\theta)$. Deduced levels, J, π , band structures. Comparisons with shell-model calculations.

2005Ma81: ${}^{40}Ca({}^{14}N,2n4p\gamma)$ ${}^{14}N$ beam from Jyvaeskylae cyclotron. Measured $\gamma\gamma\gamma(t)$ using Ge and BaF₂ detectors at ISOLDE, with four BaF_2 detectors coupled to pre-Jurosphere Ge array. Deduced $T_{1/2}$ for 420 and 627 levels.

⁴⁸V Levels

E(level) [†]	J ^{π#}	T _{1/2} ‡	E(level) [†]	J ^{π#}	E(level) [†]	J ^{π#}
0.0 [@]	4+		1685.0 ^{&} 11	5(-)	4307.7 [@] 16	(11^{+})
421.0 10	1^{+}	<135 ps	2231.5 [@] 11	8+	4390.8 ^{&} 13	(9 ⁻)
428.0 [@] 8	5+		2397.0 ^{&} 10	6-	4675? [@]	
627.0 [@] 8	6+	77 ps 7	2626.6 [@] 12	9+	4967? [@]	(10^{+})
1099.0 ^{&} 9	4-		3172.0 ^{&} 11	(7 ⁻)	6240.7 [@] 19	(13 ⁺)
1254.7 [@] 11	7^{+}		3976.9 ^{&} 13	(8 ⁻)		

[†] From a least-squares fit to γ -ray energies, assuming $\Delta E \gamma = 1$ keV.

[‡] From $\gamma\gamma\gamma(t)$ in 2005Ma81.

From Adopted Levels.

[@] Seq.(B): Sequence based on g.s.

& Band(A): Band based on 4⁻.

$\gamma(^{48}V)$

A₂ and A₄ under comments are from 1991Ca30.

E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
199 305	627.0	6^+ 0+	428.0	$\frac{5^{+}}{8^{+}}$	$A_2 = -0.48 \ I0, \ A_4 = +0.01 \ I0.$
595	2020.0)	2231.3	0	$A_2 = -1.3 2, A_4 = +0.5 I.$
414	4390.8	(9-)	3976.9	(8-)	
421	421.0	1^{+}	0.0	4+	
428	428.0	5+	0.0	4+	$A_2 = -0.56 \ 10, \ A_4 = +0.15 \ 10.$
586	1685.0	$5^{(-)}$	1099.0	4-	
627	627.0	6+	0.0	4+	
628	1254.7	7+	627.0	6+	
712	2397.0	6-	1685.0	$5^{(-)}$	
775	3172.0	(7^{-})	2397.0	6-	
805	3976.9	(8 ⁻)	3172.0	(7^{-})	
977	2231.5	8+	1254.7	7+	Additional information 1.
					$A_2 = -0.81 \ 15, \ A_4 = +0.17 \ 14.$
1099	1099.0	4-	0.0	4^{+}	
1372	2626.6	9+	1254.7	7+	$A_2 = -0.17 \ I_2, A_4 = +0.15 \ I_2.$
1604	2231.5	8+	627.0	6+	
1681	4307.7	(11^{+})	2626.6	9+	$A_2 = +0.38 \ 10, \ A_4 = -0.04 \ 12.$

Continued on next page (footnotes at end of table)

27 Al(27 Al,3n3p γ), 40 Ca(14 N,2n4p γ) 1991Ca30 (continued)

$\gamma(^{48}V)$ (continued)

E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Comments
1764	4390.8	(9 ⁻)	2626.6 9+	E_{γ} : 1704 in FIG.3 of 1991Ca30 is a typo since level-energy difference gives 1764 from the level scheme in FIG.3.
1770	2397.0	6-	627.0 6+	
1933	6240.7	(13^{+})	4307.7 (11 ⁺)	$A_2 = +0.78 \ I8, \ A_4 = +0.04 \ 21.$
2048 [‡]	4675?		2626.6 9+	tentatively placed by 1991Ca30; this placement is confirmed by 2002Br42 for a 2046 γ in ²⁴ Mg(²⁸ Si,n3p γ). A 2045 γ placed from a 8290 level by 1994Ca04 (same authors as 1991Ca30) in ¹⁰ B(⁴⁰ Ca,2p γ) should be the same transition.
2340 [‡]	4967?	(10 ⁺)	2626.6 9+	tentatively placed by 1991Ca30; this placement is confirmed by 2002Br42 for a 2343γ in $^{24}Mg(^{28}Si,n3p\gamma)$. A 2344γ placed from a 8589 level by 1994Ca04 (same authors as 1991Ca30) in $^{10}B(^{40}Ca.2p\gamma)$ should be the same transition.
2545	3172.0	(7 ⁻)	627.0 6+	

[†] From 1991Ca30, unless otherwise noted. [‡] Placement of transition in the level scheme is uncertain.

 ${}^{48}_{23}\mathrm{V}_{25}$

27 Al(27 Al,3n3p γ), 40 Ca(14 N,2n4p γ) 1991Ca30

 ${}^{48}_{23}\mathrm{V}_{25}$