⁴⁸Ca β⁻ decay: ? 2002Bb03,2000HuZZ,1985Al17

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Jun Chen	NDS 179, 1 (2022)	30-Nov-2021				

Parent: ⁴⁸Ca: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=2.9\times10^{19}$ y +42-11; $Q(\beta^-)=279$ 5; $\%\beta^-$ decay≤63.0

⁴⁸Ca-T_{1/2}: From ⁴⁸Ca Adopted Levels. $T_{1/2}(2\beta^-)=2.5\times10^{19} \text{ y} +39-10$ estimated by evaluator from partial $T_{1/2}(2\beta^-)$'s to g.s., 984, 2421, and 2997. Other: $T_{1/2}(2\nu 2\beta^-)=2.87\times10^{19} \text{ y} 51$ (2004Ra26, from analysis of Gamow-Teller strengths in ⁴⁸Ti(d,2p) and

 48 Ca(p,n)) and 3.55×10^{19} y 75 (2006Fr03, preliminary, from analysis of Gamow-Teller strengths in 48 Ti(d,2p) and 48 Ca(³He,t)). 48 Ca-Q(β^-): From 2021Wa16.

 48 Ca- $\%\beta^-$ decay: 25% +38–25 from 48 Ca Adopted Levels.

1985Al17 searched for ⁴⁸Ca β^- decay in a 3.71-g ⁴⁸Ca sample; $\gamma\gamma$ coincidences were measured in HPGE (well-type) and NaI detectors. ⁴⁸Sc 252, 4⁺, state assumed not to be fed since the feeding would be fourth-forbidden nonunique with a Q(β^-) of only 26 5.

2000HuZZ searched for ⁴⁸Ca β^- decay in the Modane Underground Laboratory using 64-g of ⁴⁸CaCo₃ powder (73% enriched). No event associated with the cascade γ 's of 984, 1038, and 1312 keV from 44-h ⁴⁸Sc β^- decay was found in a spectrum accumulated for 797 hours; HPGe.

2002Bb03,2002Ba33: source was a powder of ⁴⁸CaCO₃ (73% ⁴⁸Ca) at Modane Underground Laboratory. Measured E γ , I γ with low-background 400 cm³ HPGe with a passive shield of 6 cm lead, 10 cm of OFHC copper, and 15 cm of ordinary lead. 2002Bb03 repeat the measurement by 2002Ba33 since large impurities were found in the latter. Results in 2002Bb03 supersede those in 2002Ba33. T_{1/2}(β^-)>1.6×10²⁰ y, >2.5×10²⁰ y, >1.9×10²⁰ y for single β^- decay to g.s., 131 and 152 levels, respectively, all with 90% C.L.

No event from ${}^{48}\text{Ca}\,\beta^-$ decay has been observed.

⁴⁸Sc Levels

All data except for comments on partial β^- decay half-lives are from Adopted Levels.

E(level)	\mathbf{J}^{π}	T _{1/2}	Comments
(0.)	6+	43.67 h 9	$T_{1/2}(\beta^{-}) > 1.6 \times 10^{20}$ y (2002Bb03; 90% C.L.) to this state. Theory: 1.5×10^{29} y $\leq T_{1/2}(\beta^{-}) \leq 1.3 \times 10^{31}$ y (1999Au05).
(130.94 4)	5+		$T_{1/2}(\beta^{-}) > 2.5 \times 10^{20}$ y (2002Bb03; 90% C.L.) to this state. Theory: 1.1×10^{21} y +8-6 (1999Au05). 7.6×10 ²⁰ y 53 (1985Wa14).
(252.35 6)	4+		$T_{1/2}(\beta^-)>1.9\times10^{20}$ y (2002Bb03; 90% C.L.) to this state? unlikely to be fed since the feeding would be fourth-forbidden nonunique with Q(β^-)=30 5 (evaluator). Theory: 8.8×10^{23} y $\leq T_{1/2}(\beta^-)\leq 5.2\times10^{28}$ y (1999Au05).

$\gamma(^{48}\text{Sc})$

E_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	
(121.41 4)	(252.35)	4+	130.94?	5+	
(130.94 4)	(130.94)	5+	0.?	6+	

[†] From Adopted Gammas.

Decay Scheme

Legend

