⁴⁶Ca(α,d) **1972Ri06**

History									
Type	Author	Citation	Literature Cutoff Date						
Full Evaluation	Jun Chen	NDS 179, 1 (2022)	30-Nov-2021						

1972Ri06: E=25 MeV α beam was produced from the Argonne tandem accelerator. Target was 100 μ g/cm² Ca on a 30 μ g/cm² carbon backing. Reaction products were momentum-analyzed with an Enge split-pole spectrograph (FWHM=25 keV). Measured $\sigma(\theta(c.m.)=10^{\circ}$ to 60°). Deduced levels, J, π , L-transfers from DWBA analysis.

⁴⁸Sc Levels

Spins are given for states of the configuration= $((\pi \ 1f_{7/2})^{+1}(\nu \ 1f_{7/2})^{-1})$ multiplet based on earlier work. In zeroth order even-spin states of the multiplet should not be excited. Suppression is evident. Distribution of strength among odd J states also follows expectations. See 1972Ri06 for detailed discussion.

E(level)	$\mathrm{J}^{\pi \dagger}$	L^{\dagger}	$[\mathrm{d}\sigma/\mathrm{d}\Omega_{\mathrm{exp}}]/[\mathrm{d}\sigma/\mathrm{d}\Omega_{\mathrm{theory}}]^{\ddagger}$	E(level)	$\mathrm{J}^{\pi \dagger}$	L^{\dagger}	$[\mathrm{d}\sigma/\mathrm{d}\Omega_{exp}]/[\mathrm{d}\sigma/\mathrm{d}\Omega_{theory}]^{\ddagger}$
0.0	6 ^{+#}			2521 <i>15</i>	1+#		0.51
131 [@]	5 ^{+#}		0.83	2978 15	(5^{+})	4	
252	4 ^{+#}			3061 <i>15</i>	(1^{+})		
622 [@]	3 ^{+#}		0.80	3151 <i>15</i>	(3^{+})		
1096 [@]	7+#		1.00	3206 <i>15</i>		4	
1143	2+#			3289 15	(5^{+})		
2196 <i>15</i>	(5^{+})	4		3689 <i>15</i>	(6^{+})		
2281 <i>15</i>	(2^{+})			4178 <i>15</i>	(3^{+})		

[†] From DWBA analysis, except as noted.

[‡] Normalized to 1 for 7⁺ state.

[#] From Adopted Levels.

[@] Reference point for excitation energies taken from 1970Oh01.