⁴⁸Mn β⁺ decay (157.7 ms) 1991Sz03,1987Se07

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 179, 1 (2022)	30-Nov-2021

Parent: ⁴⁸Mn: E=0.0; $J^{\pi}=4^+$; $T_{1/2}=157.7$ ms 22; $Q(\beta^+)=13525$ 10; $\%\beta^+$ decay=100.0

⁴⁸Mn-T_{1/2}: From Adopted Levels of ⁴⁸Mn, taken as weighted average of 158.1 ms 22 (1991Sz03) and 150 ms 10 (1987Se07). ⁴⁸Mn-Q(β^+): From 2021Wa16.

 48 Mn- $\%\beta^+$ decay: Adopted $\%\beta^+$ p=0.28 4, taken from 1991Sz03. Other: 0.27 12 from 1987Se07.

1991Sz03: ⁴⁸Mn ions were produced via ¹²C(⁴⁰Ca,p3n) reaction with ⁴⁰Ca beam from the UNILAC at GSI. γ rays were detected with two HPGe detectors and β -delayed protons were detected with two surface-barrier Si detector telescopes. Measured E γ , I γ , γ (t), β -delayed protons. Deduced levels, J, π , parent T_{1/2}, β -decay branching ratios, log *ft*, B(GT).

- 1987Se07: ⁴⁸Mn ions were produced by fusion-evaporation of 11.7 MeV/nucleon ⁴⁰Ca beam from the UNILAC at GSI with a 12.4 mg/cm² tungsten window and a 27 mg/cm² graphite catcher as reaction target (E=9.8 MeV/nucleon on target) and directed onto an aluminized mylar tape. γ rays were detected with a Ge(Li) detector and β particles were detected with a thin 4π plastic scintillator for β and γ singles, with two HPGe detectors and a 2π scintillator for $\beta\gamma\gamma$ measurements. For charged-particle measurements, ions were implanted into a 43 μ g/cm² carbon foil in front of a telescope of two surface-barrier Si detectors. Measured E γ , I γ , $\beta\gamma$ -coin, $\beta\gamma\gamma$ -coin, $\beta\gamma\gamma$ -coin, $\beta\gamma(t)$, β -delayed proton decay. Deduced levels, J, π , parent T_{1/2}, β -decay branching ratios, log *ft*, B(GT). Comparisons with shell-model calculations.
- The decay scheme is based on $\gamma\gamma$ -coincidences and summing relation, and halflife measurements in 1987Se07. The decay scheme could be incomplete due to a large gap between Q-value=13525 *10* (2021Wa16) and the highest observed level at E=5793. The proton separation of ⁴⁸Cr is S(p)=8103 7 (2021Wa16).

⁴⁸Cr Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0.0	0^{+}	21.56 h 3	$\% \varepsilon + \% \beta^+ = 100$
752.11 20	2+		
1858.2 <i>3</i>	4+		
3444.8 <i>4</i>	6+		E(level): from the Adopted Levels. If placement of 87γ from 3533 level is correct, this state will be fed.
3533.2 4	4(-)		
4063.9 5	$5^{(-)}$		
4428.5 <i>4</i>	4+		
4652.8 4	$(3,4)^+$		
5032.4 4	$(3,4)^+$		
5293.8 7	$3^+, 4^+, 5^+$		
5608.2? 5	$(3^+, 4^+)$		
5792.5 <i>3</i>	4+		

[†] From a least-squares fit to γ -ray energies.

[‡] From Adopted Levels.

 ε, β^+ radiations

 $4.6 \le \log ft \le 4.9$ above 9.4 MeV excitation energy from delayed proton intensities per 250 keV interval (1991Sz03).

E(decay)	E(level)	$I\beta^{+\ddagger}$	$\mathrm{I}\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(7733 10)	5792.5	58.3 21	0.0575 22	3.49 2	58.4 21	av E β =3152.6 50; ε K=0.000878 4; ε L=9.12×10 ⁻⁵ 4; ε M+=1.581×10 ⁻⁵ 7
(7917 [#] <i>10</i>)	5608.2?	1.63 23	0.00148 21	5.1 <i>1</i>	1.63 23	av E β =3243.4 50; ε K=0.000810 4; ε L=8.42×10 ⁻⁵ 4; ε M+=1.459×10 ⁻⁵ 7

			48 Mn β^+ d	ecay (157.7	7 ms) 1991	Sz03,1987Se07 (continued)			
ϵ, β^+ radiations (continued)									
E(decay)	E(level)	Ιβ ^{+‡}	$\mathrm{I}\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments			
(8231 10)	5293.8	3.1 4	0.0025 3	4.9 1	3.1 4	av E β =3398.4 50; ε K=0.000710 3; ε L=7.38×10 ⁻⁵ 3; ε M+=1.278×10 ⁻⁵ 6			
(8493 10)	5032.4	8.3 7	0.0059 5	4.56 4	8.3 7	av E β =3527.3 50; ε K=0.000639 3; ε L=6.64×10 ⁻⁵ 3; ε M+=1.150×10 ⁻⁵ 5			
(8872 10)	4652.8	3.9 9	0.0024 6	5.0 1	3.9 9	av E β =3714.8 50; ε K=0.0005517 2; ε L=5.733×10 ⁻⁵ 22; ε M+=9.93×10 ⁻⁶ 4			
(9097 10)	4428.5	10.0 22	0.0057 13	4.6 1	10.0 22	av Eβ=3825.6 50; εK=0.0005075 1; εL=5.274×10 ⁻⁵ 20; εM+=9.14×10 ⁻⁶ 4			
(9992 [#] 10)	3533.2	< 0.2		>6.6	< 0.2	av E β =4268.7 50			
(11667 10)	1858.2	5.9 24	0.0015 6	5.4 2	5.9 24	av E β =5099.8 50; ε K=0.0002238 7; ε L=2.325×10 ⁻⁵ 7; ε M+=4.027×10 ⁻⁶ 12			
(12773 [#] 10)	752.11					I(ε+β ⁺): from intensity balancing the evaluator obtains I _{ε+β+} =9 5 (1991Sz03 obtained 9.9 114), which would result in a log <i>ft</i> =5.5 inconsistent with ΔJ=2 and Δπ=no (2nd forbidden) of this decay branch if existing. As explained in 1991Sz03, this decay branch is negligible and this mismatch in intensity balance is most probably due to unobserved high-energy transitions to the 752 level from levels above E=5793 that are populated but not seen in the decay measurements due to Pandemonium effect.			

[†] From γ+ce intensity balance at each level. See comments for the significant mismatch at the 752 level, most probably due to unobserved high-energy transitions, which could have negligible impacts on the feedings to other levels high above the 752 level.
[‡] Absolute intensity per 100 decays.
[#] Existence of this branch is questionable.

 $\gamma(^{48}{\rm Cr})$

I γ normalization: Absolute intensities are obtained by normalizing relative intensities to I γ (752)=99.7%, obtained from % β^+ p=0.28 4 from simultaneous measurement of protons and ⁴⁸Cr 752 γ in 1991Sz03, with the 752 γ being the only transition to 0⁺ ground state. Although there could be unobserved transitions from high-lying states due to Pandemonium effect, it is unlikely that there could be transitions among them to directly feed the 0⁺ ground state due to possible large spin differences. Therefore, %I γ =(752)=99.7 is considered firmly determined.

E_{γ} ‡	$I_{\gamma} \overset{\& b}{\longrightarrow}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. ^a	δ^{a}	$lpha^{\dagger}$	Comments
87 [@] c	0.21	3533.2	4(-)	3444.8	6+	[M2]		0.447 6	$\alpha(K)=0.399\ 6;\ \alpha(L)=0.0429\ 6;\ \alpha(M)=0.00564\ 8$ $\alpha(N)=0.0001953\ 27$ L : from adopted by (87)/by (1675)=10/100 and by (1675)=2.11
531.0 5	0.54 11	4063.9	5(-)	3533.2	4 ⁽⁻⁾	M1+E2	0.24 3	0.000476 9	
752.1 2	99.7 60	752.11	2+	0.0	0+	E2		0.000325 5	I _γ : weighted average of 0.8 4 (1987Se07) and 0.52 11 (1991Sz03). α =0.000325 5; α (K)=0.000294 4; α (L)=2.73×10 ⁻⁵ 4; α (M)=3.59×10 ⁻⁶ 5 α (N)=1.237×10 ⁻⁷ 10
760.2 2	3.18 24	5792.5	4+	5032.4	(3,4)+				I_{γ} : from 1991Sz03. All values in 1987Se07 have been re-normalized to this value. I_{γ} : weighted average of 3.0 3 (1987Se07) and 3.30 24
1106.1 2	39.3 16	1858.2	4+	752.11	2+	E2		0.0001234 17	(1991Sz03). α =0.0001234 <i>17</i> ; α (K)=0.0001107 <i>16</i> ; α (L)=1.024×10 ⁻⁵ <i>14</i> ; α (M)=1.347×10 ⁻⁶ <i>19</i> α (N)=5.05×10 ⁻⁸ <i>7</i> ; α (IBE)=1.007×10 ⁻⁶ <i>17</i>
									I_{γ} : weighted average of 39.4 <i>16</i> (1987Se07) and 39.2 <i>24</i> (1991Sz03).
1139.7 2	6.67 44	5792.5	4+	4652.8	(3,4)+				I_{γ} : weighted average of 6.9 5 (1987Se07) and 6.49 44 (1991Sz03).
1364.0 2	22.3 11	5792.5	4+	4428.5	4+				I _y : weighted average of 22.5 <i>11</i> (1987Se07) and 21.9 <i>14</i> (1991Sz03).
1586.4 [@]	0.31	3444.8	6+	1858.2	4+	E2		0.0001789 25	$\alpha = 0.0001789 \ 25; \ \alpha(K) = 5.10 \times 10^{-5} \ 7; \ \alpha(L) = 4.70 \times 10^{-6} \ 7; \alpha(M) = 6.19 \times 10^{-7} \ 9 \alpha(N) = 2.329 \times 10^{-8} \ 33; \ \alpha(IPF) = 0.0001226 \ 17 $
1675.0 4	2.11 14	3533.2	4(-)	1858.2	4+	(E1(+M2))	-0.01 5	0.000427 6	I_{γ} : deduced from γ+ce intensity balance and $I_{\gamma}(87)=0.211$. $\alpha=0.000427$ 6; $\alpha(K)=2.50\times10^{-5}$ 4; $\alpha(L)=2.30\times10^{-6}$ 4; $\alpha(M)=3.02\times10^{-7}$ 5 $\alpha(N)=1.140\times10^{-8}$ 18; $\alpha(IPF)=0.000399$ 6 I_{γ} : weighted average of 2.1 2 (1987Se07) and 2.11 14 (10915, 02)
1728.8 5	1.30 18	5792.5	4+	4063.9	5(-)				(19915203). I _{γ} : from 1991Sz03. Other: $\approx 0.9 \ 3$ (1987Se07).

$\gamma(^{48}Cr)$ (continued)

E_{γ}^{\ddagger}	$I_{\gamma} \overset{\& b}{\longrightarrow}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Comments
2259.2 5	1.64 19	5792.5	4+	3533.2	4(-)	I_{γ} : weighted average of 1.9 5 (1987Se07) and 1.60 19 (1991Sz03).
2570.2 5	1.59 18	4428.5	4+	1858.2	4+	I_{y} : weighted average of 1.7 5 (1987Se07) and 1.58 18 (1991Sz03).
3174.1 5	2.28 31	5032.4	$(3,4)^+$	1858.2	4+	I_{y} : weighted average of 2.4 6 (1987Se07) and 2.25 31 (1991Sz03).
3435.5 6	3.08 38	5293.8	$3^+, 4^+, 5^+$	1858.2	4+	I_{y} : weighted average of 2.6 8 (1987Se07) and 3.19 38 (1991Sz03).
3676.2 4	30.7 19	4428.5	4^{+}	752.11	2+	I_{y} : weighted average of 31.5 <i>31</i> (1987Se07) and 30.4 <i>19</i> (1991Sz03).
3750.0 [#]	1.09 20	5608.2?	$(3^+, 4^+)$	1858.2	4+	
3900.5 5	10.6 7	4652.8	$(3,4)^+$	752.11	2+	I _v : weighted average of 11.2 <i>13</i> (1987Se07) and 10.44 <i>69</i> (1991Sz03).
3934.1 5	23.3 16	5792.5	4+	1858.2	4+	I_{y} : weighted average of 24.4 27 (1987Se07) and 22.9 16 (1991Sz03).
4280.1 5	9.15 56	5032.4	$(3,4)^+$	752.11	2+	I'_{y} : weighted average of 9.8 18 (1987Se07) and 9.09 56 (1991Sz03).
4856.1 ^{#c}	0.54 10	5608.2?	$(3^+, 4^+)$	752.11	2+	
5040.5 [°] 10	<1.3	5792.5	4+	752.11	2+	E_{γ} , I_{γ} : from 1987Se07, observed dominantly due to $\gamma\gamma$ summing effects (1987Se07).

[†] Additional information 1.

 [‡] From 1987Se07, unless otherwise noted.
 [#] From 1991Sz03 only. Placement of these two transitions is based on their energy difference which corresponds to the 1106γ deexciting the 1858, 4⁺ state. [@] Rounded values from Adopted Gammas; not observed in decay measurements in this dataset.

[&] From weighted average of values from 1991Sz03 and 1987Se07 where available. Values quoted as from 1987Se07 are from re-normalization of the original intensities relative to $I\gamma(752)=100$, renormalized to $I\gamma=(752)=99.7$ by the evaluator.

^{*a*} From the Adopted Gammas.

^b Absolute intensity per 100 decays.

^c Placement of transition in the level scheme is uncertain.

 $^{48}_{24}\text{Cr}_{24}\text{-}5$

48 Mn β^+ decay (157.7 ms) 1991Sz03,1987Se07

