${}^{48}_{24}\text{Cr}_{24}\text{-}1$

Adopted Levels, Gammas

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 179, 1 (2022)	30-Nov-2021

 $Q(\beta^{-})=-13525 \ 10$; $S(n)=16330 \ 9$; $S(p)=8103 \ 7$; $Q(\alpha)=-7698 \ 7$ 2021Wa16 $S(2n)=29492 \ 14$, $S(2p)=13271 \ 7$, $Q(\varepsilon)=1657 \ 7$ (2021Wa16).

Resonance parameters: see 1983Zu03 $({}^{24}Mg({}^{24}Mg, {}^{24}Mg) and {}^{24}Mg({}^{24}Mg, {}^{24}Mg'))$, 1987Sa05 $({}^{24}Mg({}^{24}Mg, {}^{20}Ne)$, ${}^{24}Mg({}^{24}Mg, {}^{24}Mg)$, and ${}^{24}Mg({}^{24}Mg, {}^{24}Mg'))$, 1987Wu01 $({}^{24}Mg({}^{24}Mg, {}^{24}Mg'))$, 1990Wu03 $(({}^{24}Mg, {}^{24}Mg), ({}^{24}Mg, {}^{24}Mg'), ({}^{24}Mg, {}^{24}Mg, {}^{24}Mg'))$, 1993LeZY $({}^{24}Mg({}^{24}Mg, {}^{24}Mg'))$, and 1994Ha03 $(({}^{24}Mg, {}^{24}Mg'))$ and $({}^{24}Mg, {}^{20}Ne))$ and references cited by these authors. See the Nuclear Science References library for theoretical calculations. See 1992Ra06 for an interpretation of some of these resonances as hyperdeformed states.

⁴⁸Cr Levels

1994Ca04 in (40 Ca,np γ) find no evidence for super- or hyperdeformation at higher energies as speculated by I. Ragnarsson in a private communication to 1994Ca04.

Cross Reference (XREF) Flags

		$ \begin{array}{rcl} A & {}^{48}Mn \\ B & {}^{49}Fe \beta \\ C & {}^{10}B({}^{40}\\ D & {}^{24}Mg({}^{40}\\ \end{array}) $	β^{+} decay (157.7 m + p decay Ca,pn γ), 40 Ca(10 E 32 S,2 $\alpha\gamma$), (32 S, 8 Be	ms) E ${}^{28}\text{Si}({}^{28}\text{Si},2\alpha\gamma)$ I ${}^{46}\text{Ti}({}^{3}\text{He},n\gamma)$ F ${}^{34}\text{S}({}^{16}\text{O},2n\gamma)$ J ${}^{48}\text{Ti}(\pi^+,\pi^-)$ 3,pn γ) G ${}^{36}\text{Ar}({}^{14}\text{N},np\gamma)$ K ${}^{50}\text{Cr}(p,t)$ e γ) H ${}^{46}\text{Ti}({}^{3}\text{He},n)$						
E(level) [†]	\mathbf{J}^{π}	T _{1/2} #	XREF	Comments						
0.0&	0+	21.56 h <i>3</i>	ABCDEFGHIJK	$\%\epsilon + \%\beta^+ = 100$ T _{1/2} : from 1974Ts01. Others: 21.55 h <i>15</i> from 1979PrZU; 22.96 h <i>5</i> from 1963Ho17 is discrepant						
752.16 ^{&} <i>13</i>	2+	8.0 ps 5	ABCDEFGHI K XREF: H(800). J^{π} : L(p,t)=2 from 0 ⁺ ; 752.15 γ E2 to 0 ⁺ . $T_{1/2}$: weighted average of 8.43 ps 49 (2017Ar09), 7.3 ps 8 (1979EI and 6.7 ps 18 (1973Ku10) in ⁴⁰ Ca(¹⁰ B,pn γ), using RDM. Other: ps 15 from RDM in 1975Ha04 in (¹⁶ O,2n γ), which is re-analyzed be 8.7 ps 24 by 1979Ek03 after removing a restriction imposed b 1975Ha04 on normalization constants for obtaining intensity ratio PDM							
1858.40 ^{&} 22	4+	1.20 ps <i>13</i>	ABCDEFG I K	XREF: K(1845). J^{π} : L(p,t)=4 from 0 ⁺ ; 1106.3 γ E2 to 2 ⁺ . $T_{1/2}$: weighted average of 1.21 ps 13 from (³² S,2 $\alpha\gamma$), 1.04 ps 35 from (²⁸ Si,2 $\alpha\gamma$), and 1.3 ps 4 from (¹⁴ N,np γ), using DSAM. Other: 1.0 ps +14-4 from RDM in (¹⁰ B,pn γ), <3.5 ps from RDM in (¹⁶ O,2 $n\gamma$).						
3420? 20	(0^{+})		K	J^{π} : L(p,t)=(0) from 0 ⁺ .						
3444.8 ^{&} 4	6+	0.19 ps 5	A CDE G I K	J ^{π} : 1586.4 γ E2 to 4 ⁺ ; spin>4 from γ excitation function in (¹⁰ B,pn γ) (1979Ha45); band assignment.						
3524.2 10	(0,1,2,3)		Ik	XREF: k(327).						
3533.5 ^{<i>a</i>} 3	4 ⁽⁻⁾ @	3.3 ns 8	A C EFG I k	XREF: k(3527). J^{π} : spin=4 from γ excitation function and $\gamma\gamma(\theta)$ in (³ He,n γ) (2003Je06); 4 ⁻ is proposed by 1998Br34 in (²⁸ Si,2 $\alpha\gamma$) and the authors note that $\gamma(\theta)$ of 1973Ku10 (assigning 6 ⁺) in (¹⁰ B,n γ) and 1975Ha04 (assigning 6 ⁺) and 1979Ha45 (assigning 6 ⁻) in (¹⁶ O,2 $n\gamma$),						

⁴⁸Cr Levels (continued)

E(level) [†]	J^{π}	$T_{1/2}^{\#}$	XREF	Comments			
				which were interpreted as quadrupole, would also be consistent with $\Delta J=0$ dipole character and that negative parity is strongly suggested by systematics and 4 ⁻ is from shell-model prediction.			
				$1_{1/2}$: weighted average of 4.1 ns 4 from 16/5 γ (t) in (¹⁰ B,pn γ) (1979Ha45) and 2.5 ns 7 from RDM in (¹⁴ N np γ) (1979Ek03)			
3632.2 10	(2+,3-)		IK	J^{π} : (<4) from γ excitation functions in (³ He,n γ) (2003Je06); L(p,t)=(2,3) from 0 ⁺ .			
4034.3 10	(0,1,2,3)		I	J^{π} : <4 from γ excitation functions in (³ He,n γ) (2003Je06).			
4064.1 4	3(-)		Ik	$T_{1/2}$: from (¹⁰ B,pn γ).			
				$\pi^{-1} \leq 5$ from γ excitation functions and ≥ 5 from $\gamma\gamma(\theta)$ in ("He,h γ) and π^{-1} suggested by shell-model calculations (2003Je06). L(p,t)=3 from 0 ⁺ for an unresolved doublet at 4067 5 (1972Sh27).			
4064.2 ^{<i>a</i>} 4	5 ⁽⁻⁾ @	28 ps 7	A C EFG I k	J ^{π} : spin=5 from γ excitation function and $\gamma\gamma(\theta)$ in (³ He,n γ) (2003Je06); 530.77 γ M1+E2 to 4 ⁽⁻⁾ . L(p,t)=3 from 0 ⁺ for an unresolved doublet at 4067 5 (1972Sh27).			
4280 5	(0^+)		к	$T_{1/2}$: from RDM in (¹⁰ B,pn γ) (1979Ek03). $T_{1/2}^{*}$ I (p t)=(0) from 0 ⁺			
4428.7 3	(0) 4 ⁺		A K	XREF: K(4432).			
1610 10	2+		v	J^{π} : L(p,t)=4 from 0 ⁺ ; allowed β feeding (log <i>ft</i> =4.6) from 4 ⁺ parent.			
4653.0 3	$(3,4)^+$		A	J [*] : $I(p,t)=2$ from 0 [*] . J [*] : 3900.5 γ to 2 ⁺ ; allowed β feeding (log <i>ft</i> =5.0) from 4 ⁺ parent.			
4765.5 11	(4,5)		I	J ^{π} : from γ excitation functions in (³ He,n γ) (2003Je06).			
4876.0 ^{<i>a</i>} 4	(6 ⁻)	>0.7 ps	CEI	XREF: C(?). I^{π_1} (5.6) from α excitation functions in (³ He pa) (20031e06): 6 ⁻ from			
				shell-model prediction (1998Br34).			
5032.5 <i>3</i> 5131.2 <i>11</i>	(3,4)+		A I	J ^{π} : 4280.1 γ to 2 ⁺ ; allowed β feeding (log <i>ft</i> =4.6) from 4 ⁺ parent.			
5188.4 ^{&} 5	8+	0.14 ps 4	CDE G I	J ^{π} : spin=8 from $\gamma\gamma$ (DCO) in (²⁸ Si,2 $\alpha\gamma$) (1996Ca38); 1743.5 γ E2 to 6 ⁺ ; band assignment.			
				$T_{1/2}$: other: <0.8 ps from (¹⁴ N,np γ) (1979Ek03); a value of 0.52 ps 17 is from DSAM in 1979Ek03, but not adopted in their level scheme			
5294.0 7	$3^+,\!4^+,\!5^+$		Α	J^{π} : allowed β^+ feeding (log ft =4.9) from 4 ⁺ parent.			
5430 30	0^{+}		Н	J^{π} : L(³ He,n)=0 from 0 ⁺ .			
5608.6? 5	$(3^+, 4^+)$		A	J^{π} : possible allowed β^+ feeding from 4 ⁺ parent; possible 4856.1 γ to 2 ⁺ .			
5649.0 ^{<i>a</i>} 4	(7 ⁻)	0.42 ps 7	CEI	XREF: C(?).			
5670 20	(0^{+})		к	J^{*} : from band assignment and shell-model predictions (1998Br34). J^{π} : L(p,t)=(0) from 0 ⁺ .			
5784.9 11			I	· (F, ·) (·) - · · · · ·			
5792.7 3	4+		A K	T=1 $F(level): LAS 48W as$			
				J^{π} : L(p,t)=4 from 0 ⁺ .			
5834.5 11	(0+)		I				
5900 10	(0^{+})		нк	J^{π} : L(p,t)=(0) from 0 ⁺ .			
6100 10	2+		K	T=1			
				E(level): IAS 46 V 308 level. I ^{π} . I (p t)=2 from 0 ⁺			
6257.5? 10			E	J^{π} : (9 ⁺) suggested by 1998Le43 in (²⁸ Si,2 $\alpha\gamma$); no discussion by authors.			
6278.4? 11		0.14 ps <i>3</i>	E	E(level): this level with J=8 is proposed in 1996Ca38 only in (28 Si,2 $\alpha\gamma$) and could be the same level as the 9871 level proposed by 1998Br34, which has the similar deexciting gamma and nearly identical T _{1/2} from DSAM.			
6420 10	(5 ⁻)		K	T _{1/2} : from DSAM in (²⁸ Si,2 $\alpha\gamma$) (1996Ca38). J ^{π} : L(p,t)=(5) from 0 ⁺ .			

Continued on next page (footnotes at end of table)

⁴⁸Cr Levels (continued)

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{\#}$	XRI	EF	Comments
6855 10	0^{+}			K	J^{π} : L(p,t)=0 from 0 ⁺ .
7064.0 ^{&} 7	10+	0.125 ps 35	CDE	G	J ^{π} : spin>8 from γ excitation function in (¹⁰ B,pn γ) (1979Ha45); 1875.6 γ to 8 ⁺ is stretched (Δ J=2) quadrupole or Δ J=0 dipole, and can not be M2 based on RUL. T _{1/2} : other: <0.7 ps indicated by the width of 1878 γ in (¹⁴ N,np γ) (1979Fk03)
					Evidence for spin alignment from backbending in $({}^{40}Ca,np\gamma)$.
7550 10				K	
7671.2 ^{<i>a</i>} 5 7940 <i>30</i>	(9 ⁻)	0.15 ps 5	CE	н	J^{π} : from band assignment an shell-model prediction (1998Br34).
8411.9 ^{&} 8	12+	0.59 ps 17	CDE		J ^{π} : spin from $\gamma\gamma$ (DCO) in (²⁸ Si,2 $\alpha\gamma$) (1996Ca38); 1347.9 γ E2 to 10 ⁺ ; band assignment.
8462.6? 15			Е		
8750 [‡] 15	0^{+}			h jK	T=2
					XREF: $h(8770)j(8620)$. J ^{π} : $L(p,t)=0$ from 0 ⁺ .
8760 [‡] <i>15</i>	0+			h jK	T=2 XREF: $h(8770)j(8620)$. J^{π} : L(p,t)=0 from 0 ⁺ .
9040? 30				K	· · - (F,·) · · · · · · · ·
9180? <i>30</i>				K	
9530 <i>30</i>	0^{+}			Н	$E(\text{level}): \text{IAS}(^{48}\text{V}, 3.70 \text{ MeV}).$
0071 40 6	(11-)	0.120	.		J^{π} : L(³ He,n)=0 from 0 ⁺ .
98/1.4" 0	(11)	0.139 ps 35	CE		E(level): see a possible level at $E=62/8$, which could the same level as this level based on the de-exciting gamma and T ₁ a
					J^{π} : from band assignment and shell-model prediction (1998Br34).
9900 <i>30</i>				Н	
10280.9 ^{&} 9	14^{+}	0.30 ps 6	DE		J^{π} : 1868.9 γ E2 to 12 ⁺ ; member of g.s. band.
11105.6? 18			E		
11320 30	0^{+}			Н	J^{π} : L(³ He,n)=0 from 0 ⁺ .
11648.8 ^{<i>u</i>} 7	(13 ⁻)	0.48 ps 14	E		J^{n} : from band assignment and shell-model prediction (1998Br34).
12301.5?** 10	1.64	0.040 10	E		
13310.0° 9 15110.02 ^{<i>a</i>} 10	16	0.049 ps 10	DE		J^{*} : 3029.0 γ E2 to 14 ⁺ ; member of g.s. band.
15735 2 13			DF		I^{π} : (16 ⁺) suggested by (1998Br34) in (²⁸ Si 2 $\sigma\gamma$): no discussion by authors
17342.1? ^a 15			E		
17378.2? ^{&} 10			E		

[†] From a least-squares fit to γ -ray energies assuming $\Delta E \gamma = 1$ keV where not given for levels connected by γ -ray transitions, and from particle transfer reactions in other cases, unless otherwise noted.

[±] Identified as doublet T=2, $J^{\pi}=0^+$ state in (p,t).

[#] From DSAM line-shape analysis in (²⁸Si, $2\alpha\gamma$) (1998Br34), unless otherwise noted.

^(a) ⁴⁸Cr is a well-deformed nucleus with $\beta \approx 0.3$ suggesting that K is a good quantum number (1998Br34). The band head at 3533 has J=4 from excit. and the state directly above this connected by 531 γ has J=5 from excit., establishing K=4. $\delta(1675\gamma)$ excludes an appreciable Q component and strongly favors $\Delta \pi = -$. T_{1/2}(3533)=3.3 ns 8 and almost pure D character of 1675 γ excludes twofold K-forbidden E2. However, threefold K-forbidden, isospin-forbidden E1 and twofold K-forbidden M2 are consistent with expected transition probabilities. Therefore, $\pi = -$ is assigned to the 3533 and the band built on it. Note, also, that, if $\pi(3533)=+$, considerable E2 character of the 1675 γ and an E2 γ to 2⁺ would be expected and that no γ from the 4064, J=5, to 1854, J=4⁺ was observed. Arguments from 2003Je06 in ⁴⁶Ti(³He,n γ). See additional arguments by 1998Br34 in (²⁸Si, 2 $\alpha\gamma$) supporting $J^{\pi}(3533)=4^-$. Note that Mult(87 γ)=D,E2 from comparison to RUL is not consistent with this assignment.

⁴⁸Cr Levels (continued)

- [&] Band(A): g.s. (yrast) band. 1994Ca04 in (40 Ca,np γ) reverse the order of the 1744 γ and 1876 γ and, therefore, place the 8⁺ member of the band at 5318 keV. Data from the other studies indicate that the 8⁺ is at 5188 keV and this has been adopted by the evaluator. The odd-spin members of the band have been assigned only by 1994Ca04.
- ^{*a*} Band(B): Rotational-like structure based on 4⁻ (1998Br34,1998Le43,2003Je06). Possible $(d_{3/2})^1 (f_{7/2})^9$ configuration. Members of the band for states above 11648 are from figure 1 of 1998Le43 and were not discussed by 1998Br34. 2003Je06 labeled this as a negative parity nonyrast band and only reported the first four members.

						Adopt	ed Levels, (Gammas (continu	ued)
							<u> </u>	⁴⁸ Cr)	
	E _i (level)	\mathbf{J}_i^π	E_{γ}	I_{γ}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^{&}	$\delta^{\&}$	α^{\dagger}	Comments
	752.16	2+	752.15 13	100	0.0 0+	E2		0.000325 5	B(E2)(W.u.)=28.4 +19-17 α =0.000325 5; α (K)=0.000294 4; α (L)=2.73×10 ⁻⁵ 4; α (M)=3.59×10 ⁻⁶ 5 α (N)=1.337×10 ⁻⁷ 19
	1858.40	4+	1106.3 2	100	752.16 2+	E2		0.0001234 17	E _γ : weighted average of 752.1 2 from ⁴⁸ Mn β ⁺ decay, 752.2 2 from ⁴⁹ Fe β ⁺ p decay, 752.0 2 from (¹⁰ B,pnγ), 752.2 3 from (²⁸ Si,2αγ), 752.3 2 from (¹⁶ O,2nγ), 752.13 13 from (¹⁴ N,npγ), and 752.4 5 from (³ He,nγ). B(E2)(W.u.)=27.5 +32-27 α =0.0001234 17; α(K)=0.0001106 15; α(L)=1.024×10 ⁻⁵ 14; α(M)=1.347×10 ⁻⁶ 19 α(N)=5.05×10 ⁻⁸ 7; α(IPF)=1.104×10 ⁻⁶ 17 E _γ : weighted average of 1106.1 2 from ⁴⁸ Mn β ⁺ decay, 1105.2 6 from ⁴⁹ Fe β ⁺ p decay, 1106.3 2 from (¹⁰ B,pnγ), 1106.4 3 from (²⁸ Si 2cm) 1106 5 2 from (¹⁶ O 2nx) 1106 4 3 from
5	3444.8	6+	1586.4 [#] 3	100	1858.40 4+	E2		0.0001789 25	(¹⁴ N,npy), and 1106.4 5 from (³ He,ny). Mult.: Q from $\gamma(\theta)$ data, M2 ruled out by RUL. B(E2)(W.u.)=29 +10-6 α =0.0001789 25; α (K)=5.10×10 ⁻⁵ 7; α (L)=4.70×10 ⁻⁶ 7; α (M)=6.19×10 ⁻⁷ 9 α (N)=2.329×10 ⁻⁸ 33; α (IPF)=0.0001226 17 E _{γ} : others: 1586.4 6 in (¹⁰ B,pn γ); 1589.2 10 from (¹⁴ N,np γ) (1979Ek03) is discrepant, which is a quite broad peak as
	3524.2	(0,1,2,3)	2772 [@]	100	752.16 2+				mentioned in 1979Ek03.
	3533.5	4(-)	87 ^{<i>a</i>}	10	3444.8 6 ⁺	[M2]		0.447 6	$\alpha(K)=0.399\ 6;\ \alpha(L)=0.0429\ 6;\ \alpha(M)=0.00564\ 8$ $\alpha(N)=0.0001953\ 27$ $E_{\gamma}:\ from\ (^{40}Ca,pn\gamma)\ (1994Ca04).$ $I_{\gamma}:\ from\ I(87\gamma)/I(1675\gamma)=0.6/6\ in\ (^{40}Ca,pn\gamma)\ (1994Ca04).$
			1675.2 <i>3</i>	100 7	1858.40 4+	(E1(+M2))	-0.01 5	0.000427 6	B(M2)(W.u.)=9.2×10 ⁻⁺⁵⁰⁻⁵¹ exceeds K0L=1. B(E1)(W.u.)=2.1×10 ⁻⁸ +18-9; B(M2)(W.u.)<2.3×10 ⁻⁴ α =0.000427 6; α (K)=2.50×10 ⁻⁵ 4; α (L)=2.30×10 ⁻⁶ 4; α (M)=3.02×10 ⁻⁷ 5 α (N)=1.140×10 ⁻⁸ 18; α (IPF)=0.000399 6 E _γ : weighted average of 1675.0 4 from ⁴⁸ Mn β ⁺ decay, 1675.3 4 from (¹⁰ B,pnγ), 1674.9 6 from (¹⁶ O,2nγ), 1675.3 3 from (¹⁴ N,npγ), and 1675.3 10 from (³ He,nγ). I _γ : from ⁴⁸ Mn β ⁺ decay. Other: 100 20 from (¹⁰ B,pnγ). Mult.δ: D(+Q) from $\gamma\gamma(\theta)$ in (³ He,nγ); $\Delta\pi$ =(yes) from level scheme.

 $^{48}_{24}\mathrm{Cr}_{24}\text{--}5$

L

						Adopted	Levels, Gammas ((continued)	
							$\gamma(^{48}Cr)$ (continued	d)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	δ ^{&}	α^{\dagger}	Comments
3533.5	4(-)	2780.3 ^a	<80	752.16	2+				E_{γ}, I_{γ} : from (¹⁰ B,pn γ) (1973Ku10); not observed in (³ He,n γ).
3632.2	(2+,3))	2880 [@]	100	752.16	2^{+}				
4034.3	(0,1,2,3)	3282 [@]	100	752.16	2+				
4064.1	3(-)	530.75 17	100 20	3533.5	4 ⁽⁻⁾	D+Q	-0.36 +28-61		E _γ : weighted average of 530.8 <i>3</i> from (¹⁰ B,pnγ), 531.0 <i>3</i> from (²⁸ Si,2 <i>α</i> γ), 530.6 <i>2</i> from (¹⁶ O,2nγ), and 530.77 <i>17</i> from (¹⁴ N,npγ).
		2205 [@]	100 [@] 8	1858.40	4+	D,Q			Mult.: from $\gamma\gamma(\theta)$ in (³ He,n γ), with $\delta(Q/D)=-0.05$ 5 or ≥ 10 (2003Je06).
		3312 [@]	38 [@] 4	752.16	2^{+}				
4064.2	5(-)	530.77 <i>17</i>	100	3533.5	4(-)	M1+E2	0.24 3	0.000477 9	B(M1)(W.u.)=0.0050 +17-10; B(E2)(W.u.)=2.5 +11-7 α=0.000477 9; α(K)=0.000431 8; α(L)=4.01×10 ⁻⁵ 8; α(M)=5.27×10 ⁻⁶ 10 α(N)=1.98×10 ⁻⁷ 4 E _γ : from (¹⁴ N,npγ). Others: 531.0 5 from ⁴⁸ Mn β ⁺ decay, 530.8 3 from (¹⁰ B,pnγ), 531.0 3 from (²⁸ Si,2αγ), and 530.6 2 from (¹⁶ O,2nγ). Mult.δ: D+Q from γ(θ) in (¹⁰ B,pnγ), with δ(Q/D) deduced by the evaluator from 5.5% 15-10 E2 component in 1979Ha45; M2 ruled out by RUL. Others: δ(Q/D)=-0.36 +28-61 from γ(θ) in (¹⁶ O,2nγ) (1975Ha04), +0.01 5 or >7 from γγ(θ) in (³ He,nγ) (2003Je06), >20 for J ^π =6 ⁻ from γ(θ) in (¹⁴ N,npγ) (1979Ek03).
4428.7	4+	2570.2 [‡] 5	5.2 [‡] 6	1858.40	4+				
		3676.2 [‡] 4	100 [‡] 6	752.16	2+				
4653.0	$(3,4)^+$	3900.5 [‡] 5	100	752.16	2+				
4765.5	(4,5)	2907 ^w	100	1858.40	4+				<i>,</i>
4876.0	(6 ⁻)	811.9 ^{#4} 3	37# 7	4064.2	5(-)			0.00022 4	$\alpha = 0.00022 \ 4; \ \alpha(K) = 0.00020 \ 4; \ \alpha(L) = 1.9 \times 10^{-5} \ 4; \alpha(M) = 2.5 \times 10^{-6} \ 5; \ \alpha(N+) = 9.3 \times 10^{-8} \ 17 \alpha(N) = 9.3 \times 10^{-8} \ 17$
		1342.6 [#] 3	100 [#] 17	3533.5	4 ⁽⁻⁾	[E2]		0.0001185 <i>17</i>	B(E2)(W.u.)<14 α =0.0001185 17; α (K)=7.19×10 ⁻⁵ 10; α (L)=6.64×10 ⁻⁶ 9; α (M)=8.74×10 ⁻⁷ 12 α (N)=3.28×10 ⁻⁸ 5; α (IPF)=3.90×10 ⁻⁵ 6 E _{γ} : other: 1343 3 from (¹⁰ B,pn γ).
5032.5	$(3,4)^+$	3174.1 [‡] 5	24.9 [‡] <i>34</i>	1858.40	4+				
		4280.1 [‡] 5	100 [‡] 6	752.16	2+				
5131.2		1067 [@]	100	4064.2	5(-)				

6

L

						Adopted I	levels, Gammas (continued)
						<u>)</u>	(⁴⁸ Cr) (continued	<u>1)</u>
E _i (level)	\mathbf{J}_i^π	Eγ	Iγ	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	$lpha^\dagger$	Comments
5188.4	8+	1743.5 3	100	3444.8	6+	E2	0.0002385 33	B(E2)(W.u.)=24 +10-6 α=0.0002385 33; α(K)=4.24×10 ⁻⁵ 6; α(L)=3.91×10 ⁻⁶ 5; α(M)=5.14×10 ⁻⁷ 7 α(N)=1.937×10 ⁻⁸ 27; α(IPF)=0.0001917 27 E _γ : weighted average of 1742.5 10 from (¹⁰ B,pnγ), 1743.4 3 from (²⁸ Si,2αγ), and 1744.0 5 from (¹⁴ N,pγ). Mult.: from γ(θ,pol) in (¹⁴ N,pγ) (1979Ek03), and γ anisotropy (ΔJ=0 or 2) in (⁴⁰ Ca,pnγ) (1994Ca04).
5294.0	$3^+,\!4^+,\!5^+$	3435.5 [‡] 6	100	1858.40	4+			
5595.5		2062 [@]	100	3533.5	4(-)			
5608.6?	$(3^+, 4^+)$	3750.0 ^{‡a}	100 [‡] 18	1858.40	4+			
		4856.1 ^{‡a}	50 [‡] 9	752.16	2+			5
5649.0	(7 ⁻)	773.1# 3	5.0# 10	4876.0	(6 ⁻)		0.00025 5	$\alpha = 0.00025 \ 5; \ \alpha(\text{K}) = 0.00023 \ 5; \ \alpha(\text{L}) = 2.1 \times 10^{-5} \ 5; \ \alpha(\text{M}) = 2.8 \times 10^{-6} \ 6.00000 \ \alpha(\text{N}) = 1.04 \times 10^{-7} \ 20 \ \alpha(\text{N}) = 1.04 \times 10^{-7} \ 10^{-7} $
		1584.6 [#] 3	100 [#] 10	4064.2	5(-)	[E2]	0.0001783 25	B(E2)(W.u.)=12.4 +25-18 α =0.0001783 25; α (K)=5.11×10 ⁻⁵ 7; α (L)=4.71×10 ⁻⁶ 7; α (M)=6.20×10 ⁻⁷ 9 α (N)=2.335×10 ⁻⁸ 33; α (IPF)=0.0001218 17
5784.9		2340 ^{(@}	100	3444.8	6+			
5792.7 5834.5	4+	$\begin{array}{c} 760.2^{\pm} \ 2\\ 1139.7^{\pm} \ 2\\ 1364.0^{\pm} \ 2\\ 1728.8^{\pm} \ 5\\ 2259.2^{\pm} \ 5\\ 3934.1^{\pm} \ 5\\ 2301^{\textcircled{0}} \end{array}$	$13.6^{\ddagger} 10 \\ 28.6^{\ddagger} 19 \\ 96^{\ddagger} 5 \\ 5.6^{\ddagger} 8 \\ 7.0^{\ddagger} 8 \\ 100^{\ddagger} 7 \\ 100$	5032.5 4653.0 4428.7 4064.2 3533.5 1858.40 3533.5	$(3,4)^{+} (3,4)^{+} 4^{+} 5^{(-)} 4^{(-)} 4^{+} 4^{(-)} $			
6257.5?		1069 ^{#a}		5188.4	8+			
6278.4?		2214 ^{#a}		4064.2	5(-)			E_{γ} : could be the 2200 γ from the 9871 level.
7064.0	10+	1875.6 5	100	5188.4	8+	E2	0.000294 4	B(E2)(W.u.)=19 +7-4 α=0.000294 4; α(K)=3.69×10 ⁻⁵ 5; α(L)=3.40×10 ⁻⁶ 5; α(M)=4.47×10 ⁻⁷ 6 α(N)=1.686×10 ⁻⁸ 24; α(IPF)=0.0002530 35 E _γ : weighted average of 1876 2 from (¹⁰ B,pnγ), 1875.4 3 from (²⁸ Si,2αγ), and 1878.2 12 from (¹⁴ N,npγ). Mult.: stretched (ΔJ=2) quadrupole or ΔJ=0 dipole from angular anisotropy in (⁴⁰ Ca,pnγ) (1994Ca04); ΔJ=0 ruled out by γ excitation function from level scheme; M2 ruled out by RUL.

7

From ENSDF

$\gamma(^{48}Cr)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. ^{&}	$lpha^{\dagger}$	Comments
7671.2	(9 ⁻)	2022.2 [#] 3	100	5649.0	(7 ⁻)	[E2]	0.000359 5	B(E2)(W.u.)=11 +5-3 α =0.000359 5; α (K)=3.21×10 ⁻⁵ 4; α (L)=2.96×10 ⁻⁶ 4; α (M)=3.89×10 ⁻⁷ 5 α (N)=1.468×10 ⁻⁸ 21; α (IPF)=0.000324 5
8411.9	12+	1347.9 [#] 3	100	7064.0	10+	E2	0.0001192 <i>17</i>	B(E2)(W.u.)=21 +9-5 α=0.0001192 17; α(K)=7.132×10 ⁻⁵ 99; α(L)=6.59×10 ⁻⁶ 9; α(M)=8.67×10 ⁻⁷ 12 α(N)=3.26×10 ⁻⁸ 5; α(IPF)=4.03×10 ⁻⁵ 6 Mult.: stretched (ΔJ=2) quadrupole or ΔJ=0 dipole from angular anisotropy in (⁴⁰ Ca,pnγ) (1994Ca04); ΔJ=0 ruled out by γγ(DCO) in (²⁸ Si,2αγ) (1996Ca38); M2 ruled out by RUL.
8462.6?		2205 ^{#a}		6257.5?				
9871.4	(11 ⁻)	2200.1 [#] 3	100	7671.2	(9 ⁻)	[E2]	0.000442 6	B(E2)(W.u.)=7.6 +26-16 α =0.000442 6; α (K)=2.76×10 ⁻⁵ 4; α (L)=2.54×10 ⁻⁶ 4; α (M)=3.34×10 ⁻⁷ 5 α (N)=1.262×10 ⁻⁸ 18; α (IPF)=0.000411 6
10280.9	14+	1868.9 [#] 3	100	8411.9	12+	E2	0.000291 4	B(E2)(W.u.)=8.0 +20-13 α =0.000291 4; α (K)=3.72×10 ⁻⁵ 5; α (L)=3.42×10 ⁻⁶ 5; α (M)=4.50×10 ⁻⁷ 6 α (N)=1.698×10 ⁻⁸ 24; α (IPF)=0.0002498 35 Mult.: Q from $\gamma\gamma$ (DCO) in (²⁸ Si,2 $\alpha\gamma$) (1996Ca38); M2 ruled out by RUL.
11105.6?		2643 ^{#a}		8462.6?				
11648.8	(13 ⁻)	1777.4 [#] 3	100	9871.4	(11 ⁻)	[E2]	0.0002523 35	B(E2)(W.u.)=6.4 +26-15 α =0.0002523 35; α (K)=4.09×10 ⁻⁵ 6; α (L)=3.76×10 ⁻⁶ 5; α (M)=4.95×10 ⁻⁷ 7 α (N)=1.867×10 ⁻⁸ 26; α (IPF)=0.0002071 29
12301.5?		2430 ^{#a}		9871.4	(11^{-})			
13310.0	16+	3029.0 [#] 3	100	10280.9	14+	E2	0.000813 11	B(E2)(W.u.)=4.4 +11-8 α =0.000813 11; α (K)=1.614×10 ⁻⁵ 23; α (L)=1.482×10 ⁻⁶ 21; α (M)=1.951×10 ⁻⁷ 27 α (N)=7.37×10 ⁻⁹ 10; α (IPF)=0.000796 11 Mult.: Q from $\gamma\gamma$ (DCO) in (²⁸ Si,2 $\alpha\gamma$); M2 ruled out by RUL.
15119.0?		3470 ^{#a}		11648.8	(13-)			
15735.2		5454 [#]		10280.9	14+			
17342.1?		2223 ^{#a}		15119.0?				
17378.2?		4069 ^{#a}		13310.0	16+			
† Additi	ional info 48 Mn <i>P</i> +	ormation 1.						

 ∞

[‡] From ⁴⁸Mn β⁺ decay.
[#] From (²⁸Si,2αγ).
[@] From (³He,nγ).
[&] From γ(θ,pol) in (¹⁴N,npγ), γ(θ) in (¹⁰B,pnγ) and (¹⁶O,2nγ), unless otherwise noted.
^a Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas Legend Level Scheme Intensities: Relative photon branching from each level $---- \sim \gamma$ Decay (Uncertain) 40₆₀ Ñ <u>17378.2</u> _____ 5454 15735.2 1 945 <u>15119.0</u> _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 001 23 0.000 + 16+ <u>13310.0</u> 0.049 ps 10 H 1774 ____<u>12301.5</u> (13⁻) 11648.8 0.48 ps 14 001 - 1868. F 2643 $\exists 20_{0}^{|} I_{1} I_{$ _ _ _ <u>11105.6</u> 10280.9 14+ 0.30 ps 6 (11^{-}) <u>9871.4</u> 0.139 ps 35 | 13429 1 001 53 92 100 | -- -- - -205 + 2022 + 1 _ <u>_8462.6</u> 8411.9 12^{+} 0.59 ps 17 + 1835 | - 1835 | - 1835 | (9-) 7671.2 0.15 ps 5 10^{+} 7064.0 0.125 ps 35 2214 8 28.6 Ş <u>,</u>0 13.6 S _6278.4 _6257.5 8 0.14 ps 3 5834.5 $\frac{4^+}{(7^-)}$ 5792.7 5649.0 0.42 ps 7 5188.4 5032.5 $\frac{\overline{8^+}}{(3,4)^+}$ 0.14 ps 4 Т 4653.0 $\frac{1}{5^{(-)}}$ 4428.7 28 ps 7 4064.2 4(-) 3533.5 3.3 ns 8 1858.40 1.20 ps 13 4+ 0^+ 0.0 21.56 h 3

 $^{48}_{24}Cr_{24}$

Adopted Levels, Gammas Legend Level Scheme (continued) Intensities: Relative photon branching from each level $--- \rightarrow \gamma$ Decay (Uncertain) ·] ¹⁵846 (E2) 100 + 3340 100 8 5784.9 (7⁻) 5649.0 0.42 ps 7 8 (3⁺,4⁺) <u>5608.6</u> . 6. _ _ _ 5595.5 4 3435,5 100 1 124 12 22 100 | $3^+, 4^+, 5^+$ 5294.0 6 4901 0.14 ps 4 8+ 8_ 20 5188.4 ŝ + 1342 | 1 (23) 5131.2 428¹ 3174 ا _حقی اورزه ا $(3,4)^+$ 5032.5 *| - 290*¦ 2007 | 100 | (6⁻) $>0.7 \ \mathrm{ps}$ 4876.0 6 (4,5) 4765.5 -0° $\left| \frac{3_{0_{2_{2_{2}}}}}{2_{3_{0_{2}}}} \right|_{2_{3}}$ (3,4)+ 4653.0 + 39, 73, 14, 15, 100 + $\left[\begin{array}{c} 1 \\ - 3$ 4428.7 4+ 1 33/2 38 $\frac{5^{(-)}}{3^{(-)}}$ - ⁶, 4064.2 28 ps 7 + 100 4064.1 (0,1,2,3) 4034.3 + -2850 100 .3 TB (2+,3-) 3632.2 200 4(-) <u>3533.5</u> 3.3 ns 8 <u>6</u>+ <u>3444.8</u> 0.19 ps 5 <u>1858.40</u> 1.20 ps *13* 4^{+} 2^{+} 752.16 8.0 ps 5 0.0 21.56 h 3 0^+

 $^{48}_{24}{\rm Cr}_{24}$

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{48}_{24}{\rm Cr}_{24}$

Adopted Levels, Gammas

 $^{48}_{24}{\rm Cr}_{24}$