⁴⁸Ca(α , $\alpha'\gamma$) **2014De04**

History								
Type	Author	Citation	Literature Cutoff Date					
Full Evaluation	Jun Chen	NDS 179, 1 (2022)	30-Nov-2021					

2014De04: E=136 MeV α beam was produced from the AGOR cyclotron at Kernfysich Versneller Institute in Groningen, Netherlands. Target was 1.7 mg/cm² 99% enriched self-supporting ⁴⁸Ca. Scattered α particles detected by EUROSUPERNOVA detection system of the QQD-type Big-Bite Spectrometer at θ_{lab} =5.8° and γ rays were detected with an array of six HPGe detectors. Measured E α , E γ , $\alpha\gamma$ -coin, $\alpha\gamma(\theta$ =80° to 280°). Deduced levels, J, π , transition strength from DWBA analysis. Comparison with RPA (Random Phase Approximation) calculations. 2014De04 also report data on (γ,γ') and re-analysis of $\sigma(\theta)$ data from (γ,γ') by 2002Ha13.

⁴⁸Ca Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments				
0.0	0+					
3831	2					
4506	3					
6600	1					
6800	2					
(7300)	1-	E(level): 7.3 MeV dominant isovector state was not observed in the $(\alpha, \alpha' \gamma)$. The authors state that α particle in inelastic scattering is selective to the excitation of natural parity, and since the 7.3-MeV state was not observed, it could be a positive parity. However in a separate (pol γ, γ') experiment, the 7.3-MeV state was observed and indicated to have a negative parity. Hence the absence of the 7.3 MeV state in the $(\alpha, \alpha' \gamma)$ experiment cannot be explained by its parity.				
7651	1	E(level): 7.6 MeV dominant isoscalar state.				
8050	2					
8400	1					
8900	1-#	J^{π} : spin=2 from Fig.1 of 2014De04 from $(\alpha, \alpha' \gamma)$, but 1 ⁻ is determined by 2014De04 from re-analysis of $\gamma(\theta)$ of 2002Ha13 in (γ, γ') and a γ asymmetry measurement with (γ, γ') by 2014De04. This discrepancy could indicate two separate levels with close energies.				
9050	1					
9300	1#					
9470	1					
9550	1					

 $^{^{\}dagger}$ From γ decays to the ground state.

$\gamma(^{48}\text{Ca})$

E_{γ}^{\dagger}	$E_i(level)$	\mathbf{J}_i^{π}	$\underline{\mathbf{E}_f} \ \underline{\mathbf{J}_f^{\pi}}$	Mult.#	Comments
3831‡	3831	2	0.0 0+	Q	
4506 [‡]	4506	3	$0.0 \ 0^{+}$	O	
6600	6600	1	$0.0 \ 0^{+}$	D	
6800	6800	2	$0.0 \ 0^{+}$	Q	
(7300)	(7300)	1-	$0.0 0^{+}$		E_{γ} : from (γ, γ') by 2014De04; not seen in $(\alpha, \alpha' \gamma)$.
7651 [‡]	7651	1	$0.0 \ 0^{+}$	D	
8050	8050	2	$0.0 \ 0^{+}$		
8400	8400	1	$0.0 \ 0^{+}$	D	
8900	8900	1-	$0.0 0^{+}$	D	
9050	9050	1	$0.0 \ 0^{+}$	D	

Continued on next page (footnotes at end of table)

[‡] From $\alpha \gamma(\theta)$ in 2014De04 for excited states, unless otherwise noted.

[#] From reanalysis of $\gamma(\theta)$ of 2002Ha13 in (γ, γ') and additional γ asymmetry measurement by 2014De04. Previously, J=2 was assigned by 2002Ha13.

48 Ca(α , α' γ) 2014De04 (continued)

γ (48Ca) (continued)

 $^{^{\}dagger}$ Estimated from Fig. 1 of 2014De04, unless otherwise noted.

[‡] From Fig. 4 of 2014De04. # From $\alpha \gamma(\theta)$ in 2014De04.

⁴⁸Ca(α , $\alpha'\gamma$) 2014De04

Legend

Level Scheme

---- → γ Decay (Uncertain)

