	Histo	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	S. Ota and E. A. Mccutchan	NDS 203,1 (2025)	1-Apr-2025

1986De13,1985DeZU measured yield curve, resonance energies, and strengths (E(p)=430-1340 keV; Ge(Li), γ -x; ²⁷Al(p, γ) calibration); S(p) (⁶⁶Ga calibration source); γ 's, $\gamma(\theta)$ (Ge(Li), γ -x). DSAM. Shell-model calculations.

1993Ca12 analyzed the data of 1986De13 using a nonmetric multi-dimensional scaling method.

Data from the works listed under "Others" have been retained only if they complement the present work or were cited by 1986De13 in their spin and parity arguments.

1974Ri16: E(p)=1-4 MeV. Activation measurement using NaI detectors. Deduced cross section and compared results to Hauser-Feshbach calculations.

1981Ke09: E(p)=0.72 – 3.0 MeV. Measured total γ yields at 55°. Deduced cross section and compared results to Hauser-Feshbach calculations.

1974Ri16: E(c.m.) \approx 1-4 MeV. Activation measurement; γ^{\pm} -coincidence, NaI.

1981Ke09: E=0.72-3.00 MeV. Measured total γ -ray yields (55°). Deduced σ and $\langle \sigma v \rangle$.

Others: 1967A118 (E(p)=1020-1365 keV), 1970Mc24 (E(p)=1363 keV), 1970Wi06 (E(p)=1095-1285 keV), and 1973Sc29

(E(p)=1546-1572 keV); see 1977Ha45 for a summary of these data. See 1986De13 for a comparison between their data and those compiled by 1977Ha45 and for a discussion of problems noted in the work of 1973Sc29. See also ⁴⁶Ti(p, γ) E=0.72-4 MeV and ⁴⁶Ti(p, γ),(p,p'),(p,p' γ) for additional information on this reaction.

⁴⁷V Levels

Note: the 3491, 5233, and 5590 states suggested by 1973Sc29 were not observed by 1986De13.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	Comments
0	3/2-&		
87 525 9	$5/2^{-8}$		
145 821 75	5/2 7/2- <mark>&</mark>		
250 496 4	$\frac{1}{2}$		
239.480 4	5/2 5/2+		I^{π} : from 0.40 res primary $\alpha(\theta)$ and δ DIII of 1780 μ
1138 55 3	J/2 7/2+	>208 fc	J. from 940 res primary $\gamma(0)$ and decay $\gamma(0)$'s and DIII 's
1271.80.5	$0/2^{-}$	200.15	J. from decay $\gamma(0)$ and decay $\gamma(0)$ s and RUL s.
1271.00 5	$\frac{y_{2}}{11}$	0.25 ps 0	\mathbf{J} . Holl decay $y(0)$ s and ROE s.
1294.96 0	11/2	>0.31 ps	
1660.62 12	1/2+ 🗙	0.37 ps 16	
1746.96 4	9/2+	624 fs +90–24	J^{π} : from 1545,1825 res primary $\gamma(\theta)$ and 1825 res primary and decay δ' s and RUL's.
1968.92 <i>3</i>	$3/2^{+}$	0.44 ps 12	J^{π} : from 1085 res primary $\gamma(\theta)$ and decay $\gamma(\theta)$'s and RUL's.
2082.72 2	3/2-	14.6 fs 35	J ^{π} : from 1253 res primary $\gamma(\theta)$ and 701 res primary and decay RUL's.
2175.86 4	$5/2^{-}$	15 fs 5	J^{π} : from 1545 res primary RUL and decay $\gamma(\theta)$'s and RUL's.
2211.75 <i>3</i>	$1/2^{-}$	83 fs 21	J ^{π} : from 1096 res primary $\gamma(\theta)$ and decay RUL's.
2439.54 4	$5/2^{+}$	65 fs 14	J^{π} : from 940 res primary $\gamma(\theta)$ and RUL(2180).
2722.63 7	5/2-	36 fs 10	J^{π} : from decay $\gamma(\theta)$'s and RUL's.
2747.12 16	9/2-	25 fs 10	J^{π} : from 1545 res primary $\gamma(\theta)$ and decay RUL's.
2767.32 6	$(1/2)^{-}$	10.4 fs 28	J^{π} : 1/2 ⁻ ,3/2 ⁻ from L(³ He,d)=1 (1967Ro13). 1/2 from average-spin method (1991Ki11).
2810.04 12	$7/2^{+}$	0.11 ps 3	J^{π} : from 1085 res primary $\gamma(\theta)$ and decay RUL's.
2984.29 11	$\frac{1}{7/2}$	5 fs $\frac{1}{2}$	J^{π} : from 1545 res primary $\gamma(\theta)$ and decay RUL's.
3005.45 <i>3</i>	3/2-	6 fs 2	J ^{π} : 3/2 from 1085,811 res primary RUL's and decay $\gamma(\theta)$'s and RUL's; L(p)=1 in
	•		(³ He,d).
3054.22 15	5/2-	5 fs 2	J^{π} : from 875 res primary RUL and 1545 res primary $\gamma(\theta)$.
3247.73 8	7/2-	76 fs 21	J^{π} : from 1545 res primary $\gamma(\theta)$ and 1336 res primary and decay RUL's.

Continued on next page (footnotes at end of table)

⁴⁷V Levels (continued)

E(level) [†]	$\mathrm{J}^{\pi\ddagger}$	$T_{1/2}^{\#}$	Comments
3303.53 ^a 4	3/2	32 fs 7	J^{π} : from 1336 res primary and decay $\gamma(\theta)$'s.
3355.49 ^{<i>a</i>} 13	5/2 ⁺	5 fs 2	J^{π} : from 1253 res primary $\gamma(\theta)$ and RUL and decay RUL's.
3362.65 9	$1/2^{(-)}$	2.8 fs 14	J ^{π} : ≤5/2 ⁺ from 875,986 res primary RUL's (1986De13). ≠3/2 from 1549 res
~			primary $\gamma(\theta)$; $\pi = -$ from almost 100% decay to g.s. (1973Sc29).
3370.52 ^{<i>a</i>} 4	1/2,3/2,5/2+	11.8 fs 21	J^{π} : from 986 res primary RUL.
	2 / 2		3370.52,3370.56 doublet identified by differing γ -deexcitation patterns.
3370.56 8	$\frac{3}{2}$	<5 fs	J^{π} : $\leq 3/2$ from 986,875 res primary RUL's; $\neq 1/2$ from 1154 res primary $\gamma(\theta)$.
3517.08 15	5/2(-)	<6.9 fs	J^{n} : 5/2 from decay $\gamma(\theta)$ and decay RUL's (1986De13). π =- since $\delta \neq 0$ for
3524.60 12	7/2+	9.7 fs 28	J^{π} : from 1253 res primary $\gamma(\theta)$ and decay RUL's.
3590.35 6	$5/2^{(-)}$	6 fs 2	J^{π} : 5/2 from decay $\gamma(\theta)$ and RUL's (1986De13). π =- since $\delta \neq 0$ for 1565 res
2650 71 14	(7/2)	14 E- 4	primary (1973Sc29).
3659.71 74	(7/2)	14 IS 4	J^* : from 1255 res primary $\gamma(\theta)$ and RUL and from decay RUL's. Parentheses added by evaluator since this state is a possible doublet.
2604 40 2	5/2(+)/(2/2+)	(5- 2	Possible doublet.
3094.4° 3	$\frac{5}{2^{(1)}}, \frac{5}{2^{(2)}}$	0 18 3	J [*] : from 1556 res primary KUL and decay $\gamma(\theta)$ and KUL's.
3/18.0 3	1/2,(3/2,9/2)	15 fc 6	J ^T . from 1343,1085 respiningly KOL 8 and decay $\gamma(\theta)$.
3721.2913 $37627\frac{a}{3}$	1/2	13 18 0	J. HOIII 1255 IES PHILIALY $\gamma(0)$ and 1545 IES PHILIALY KOL.
3773.4.2	(1/2)	<11 fs	I^{π} : 1/2 (3/2 ⁻ 5/2 ⁻) from 743 875 1154 res primary RUL's (1986De13) 1/2 from
5115.12	(1/2)	(11 15	average-spin method (1991Ki11).
3822.6 2	1/2,3/2	19 fs 9	J^{π} : from 875,1559 res primary RUL's.
3869.0 ^a 3	5/2 ^b	9.7 fs 35	
3875.75 ^a 30	5/2,(3/2-)	<8 fs	J^{π} : from 1286 res primary and decay RUL's.
3876.0 2	7/2- b	<11 fs	
3890.1 ^{<i>a</i>} 2	$\leq 5/2^{+}$	<3.5 fs	J^{π} : from 1559 res primary RUL.
3892.26 11	$3/2,(5/2^+)$	24 fs 18	J^{π} : from 986,1085 res primary and decay RUL's.
3952.6 ^a 4	7/2,(5/2 ⁻)	37 fs 14	J ^{π} : from decay $\gamma(\theta)$ and 940 res primary and decay RUL's.
3958.7 ^a 3	3/2+	9.0 fs 28	J ^{π} : from 1253 res primary $\gamma(\theta)$ and decay RUL's.
3984.97 ^{<i>a</i>} 17	$7/2, (3/2^+, 5/2^+)$	24 fs 9	J^{π} : from 1253 res primary RUL.
4080.60 12	3/2+	15 fs 4	J ^{<i>n</i>} : from decay $\gamma(\theta)$'s and 986 res primary and decay RUL's.
4099.06 ^{<i>a</i>} 14	5/2 ⁻ ,(3/2 ⁻) ⁰	<8.3 fs	
4100.31 10	3/2-	5.5 fs 21	J^{π} : 3/2 from 986,875,1253 res primary and decay RUL's. L(³ He,d)=1.
4118.12 ^a 14	3/2,(1/2,5/2)	13 fs 4	J ^{<i>n</i>} : from 811 res primary RUL.
4150.35 11	$5/2^{(-)}$	fs</td <td>J^{n}: from 1085 res primary and decay RUL's.</td>	J^{n} : from 1085 res primary and decay RUL's.
4197.3 3	$5/2^{(-)}$	<11 fs	J^{π} : from 1085,1154 res primary and decay RUL's.
4207.10 14	3/2,(1/2,5/2)	<11 fr	J ^{Λ} : from 1559 res primary RUL.
4222.48 0	$\frac{3}{2}$ 7/2 (3/2+ 5/2+)	<11 18	J ^{π} : from 1336 res primary P III
4271.00 20	(1/2)	<11 fs	J^{π} : 1/2,(3/2 ⁻) from 986,875,1154 primary RUL's (1986De13). 1/2 from
			average-spin method (1991Ki11).
4345.19 10	$(1/2^{+})$	<9 fs	J [*] : 3/2,1/2 ⁺ from 986,8/5,1253 primary RUL's (1986De13). 1/2 from average-spin method (1991Ki11).
4392.80 ^{<i>a</i>} 20	3/2,(1/2 ⁻)	<24 fs	J^{π} : from 1559,875 res primary and decay RUL's.
4402.6^{a} 3 4406.4^{a} 4	7/2,(5/2,9/2) ^D	<28 fs	
4453.7 ^{<i>a</i>} 2	7/2	11 fs 6	J^{π} : from 1253 res primary $\gamma(\theta)$ and decay RUL's.
4509.52 ^{<i>a</i>} 14	$7/2,(3/2.5/2^+)$		J^{π} : from 1253 res primary $\gamma(\theta)$.
4510.01 14	5/2,(3/2-)	<8.3 fs	J ^{π} : from 1154 res primary RUL and decay $\gamma(\theta)$.
4514.5 ^a 3	3/2,(1/2,5/2 ⁻)		J^{π} : from 875 res primary RUL.
4543.02 ^{<i>a</i>} 20	3/2,(1/2,5/2+)		J^{π} : from 1559 res primary RUL.
4568.68 20	5/2	<9 fs	J ^{π} : from 1545,1096 res primary RUL's and $\gamma(\theta)$.

Continued on next page (footnotes at end of table)

⁴⁷V Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	$(2J+1)\Gamma_{\rm p}\Gamma_{\gamma}/\Gamma ({\rm meV})^{@}$	Comments
4694.33 ^a 11	5/2+,(3/2+)	<8.3 fs		J ^{π} : from decay $\gamma(\theta)$'s and 1085 res primary and decay RUL's.
4719.2 ^a 3	$3/2.(1/2.5/2^{-})$			J^{π} : from 875 res primary RUL.
4733.8 ^{<i>a</i>} 3	9/2 ⁽⁻⁾	<15 fs		J^{π} : from 1545 res primary RUL and decay RUL's and $\gamma(\theta)$'s.
4792.9 ^a 3	1/2,3/2			J^{π} : from 875,986 res primary RUL's.
4796.8 ^a 3	$3/2,(1/2^-,5/2^-)$			J^{π} : from 875,1154 res primary RUL's.
4807.30 14	5/2	15 fs 9		J^{π} : from 1253 res primary and decay RUL's.
4852.5 ^a 3	$5/2,(1/2^-,3/2^-)$			J^{π} : from 1154 res primary RUL.
4907.6 ^{<i>a</i>} 2	$5/2,(3/2^+,7/2^+)$	<13 fs		J^{π} : from 1253 res primary RUL.
4955.12 ^{<i>a</i>} 13 4976.5 ^{<i>a</i>} 3	1/2,3/2,5/2+			J^{π} : from 986 res primary RUL.
4998.7 ^{<i>a</i>} 3	5/2,(7/2)			J^{π} : from 1545,1096 res primary RUL's and decay $\gamma(\theta)$.
5016.0 ^a 3	3/2,(5/2 ⁺)	<15 fs		J^{π} : from 975,1085 res primary RUL's and decay
~				$\gamma(heta).$
5108.65 ^{<i>a</i>} 13	1/2,3/2,5/2+			J^{π} : from 986 res primary RUL's.
5123.86 14	7/2,(5/2+)			J^{π} : from 1253 res primary and decay RUL's.
5142.16 9	$3/2,(1/2^-,5/2^-)$	<11 fs		J^{n} : from 8/5,1154 res primary RUL's.
5222.71° 20	3/2,(5/2+)			J [*] : from 1559 res primary RUL and decay $\gamma(\theta)$.
5255.57 5				From $19/35c29$. $J^{*}=(3/2)$ suggested by $19/35c29$
				with the data. See 1986De13 for discussion
5240.0^{a} 3	$5/2^{(+)}$ $(3/2^+ 7/2^+)$	~5 fs		I^{π} : from 1253 res primary PLU
5635.8.3	$3/2^{-}$, $(3/2^{-},7/2^{-})$	< 19 fs	082	T=3/2
	0/2	(1) 10	0.0 -	possible IAS(⁴⁷ Ti 1550) and possibly fragmented
				E(level): $E(p)=478.5$ 3 calculated by 1986De13
				from measured Ex=5635.8 3.
				$T_{1/2}$: based on the Doppler-shift of primary γ' s
				deexciting the resonance.
5738 <i>3</i>	1/2,3/2	<7 fs	1.5 3	$T_{1/2}$: based on the Doppler-shift of primary γ 's
				deexciting the resonance.
				$E_p(lab) = 583 \ 3.$
5853.58° 9	$1/2^{(-)}$	<8 fs	27 4	$T_{1/2}$: based on the Doppler-shift of primary γ' s deexciting the resonance.
				E(level): from $E_p(lab) = 700.72$ 9 and Sp (2021Wa16).
5885.4° 2	3/2	<7 fs	8 2	$T_{1/2}$: based on the Doppler-shift of primary γ' s
				$F(level)$: from $F_{-}(lab)=733.2.2$ and $Sp(2021Wa16)$
5007 17 5	1/2(-)	<2 fa	121d 17	Encompart of $IAS/4^{7}T$; 1704)?
5007.17 5	1/2	<2.18	124 17	$E(\text{level}): E(p)=735.38 \ 9 \ \text{calculated by } 1986\text{De}13$
				from measured Ex=5887.17 5.
5894.77° 12	1/2	<5 fs	47 7	E(level): from $E_p(lab)=742.80 \ 11$ and Sp (2021Wa16).
5961.4 <i>4</i>	1/2	<8.3 fs	28 4	E(level): from $E_p(lab)=810.9 4$ and Sp (2021Wa16).
5994.5 <i>4</i>	3/2	<6 fs	13 3	$T_{1/2}$: based on the Doppler-shift of primary γ' s
				deexciting the resonance. $E(1,1) = 0.0000000000000000000000000000000000$
6024 17 8	1/2-	< 1.4 fc	240 30	E(level): from $E_p(lab)=844.74$ and Sp (2021 Wal6). E(level): from E (lab)=875.02.6 and Sp
0024.17 0	1/2	<1.4 18	2 4 0 30	$(2021W_{a}16)$ (2021W_{a}16)
				possible fragment of $IAS(^{47}Ti 1794)$
6087 60 8	5/2(+)	<5 fs	30.4	T _{1/2} : hased on the Doppler-shift of primary γ' s
0007.00 0	512	NJ 13	50 T	$r_{1/2}$. Subset on the Doppler-shift of printary y s

Continued on next page (footnotes at end of table)

⁴⁷V Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	$(2J+1)\Gamma_{p}\Gamma_{\gamma}/\Gamma (meV)^{@}$	Comments	
				deexciting the resonance.	
				E(level): from $E_p(lab)=939.83$ 6 and S(p) (2021Wa16).	
6122.24 8	$1/2^{(+)}$	<3 fs	89 11	E(level): from $E_p(lab)=975.22$ 6 and S(p) (2021Wa16).	
6132.77 7	$1/2^{+}$	<1.4 fs	180 20	E(level): calibration point of all E(p) values, except as noted.	
				E(level): from $E_p(lab)=985.985$ and S(p) (2021Wa16).	
6157.69 8	$(5/2^+)$	<17 fs	38 5	E(level): from $E_p(lab)=1011.44$ 6 and $S(p)$ (2021Wa16).	
6166.36 8	$3/2^{(-)}$	<1.4 fs	460 60	E(level): from $E_p(lab)=1020.30$ 6 and S(p) (2021Wa16).	
6190.76 8	(3/2)	<2 fs	240 30	E(level): from $E_p(lab)=1045.23$ 6 and S(p) (2021Wa16).	
6229.72 8	$5/2^{+}$	<3 fs	200 30	E(level): from $E_p(lab)=1085.04$ 6 and Sn (2021Wa16).	
6240.11 8	$3/2^{(-)}$	<0.7 fs	7.1×10 ² <i>d</i> 10	E(level): from $E_p(lab)=1095.66 \ 6$ and Sn (2021Wa16).	
6271.09 9	$(3/2^{-})$	<0.4 fs	1.22×10^{3d} 15	E(level): from $E_p(lab)=1127.31$ 7 and S(p) (2021Wa16).	
6296.77 9	3/2-	<1.4 fs	510 60	E(level): from $E_p(lab)=1153.54$ 7 and S(p) (2021Wa16).	
6351.15 9	(3/2)		9.8×10^2 13	E(level): from $E_p(lab)=1209.11$ 7 and S(p) (2021Wa16).	
6373.99 9	(1/2)	<2 fs	116 14	E(level): from $E_p(lab)=1232.44$ 7 and S(p) (2021Wa16).	
6387.44 9	$(5/2^+)$	<3 fs	170 20	E(level): from $E_p(lab)=1246.19$ 9 and S(p) (2021Wa16).	
				possible fragment of IAS(⁴⁷ Ti.2260).	
6394.12 9	$5/2^{+}$	<1.4 fs	440 60	E(level): from $E_p(lab)=1253.01$ 7 and S(p) (2021Wa16).	
	- /			possible fragment of IAS(⁴⁷ Ti,2260).	
6426.04 13	$3/2^{(-)}$	<1.4 fs	470 60	E(level): from $E_p(lab)=1285.62$ 11 and S(p) (2021Wa16).	
6427.56 13	5/2	<1.4 fs	480 60	E(level): from $E_p(lab)=1287.18$ 11 and S(p) (2021Wa16).	
6475.47 9	$5/2^{(+)}$	<1.4 fs	510 60	E(level): from $E_p(lab)=1336.13$ 7 and S(p) (2021Wa16).	
6679.38 18	$7/2^{(-)}$	<1.4 fs	620 90	E(level): $E(p)=1545.0$ 2 calculated from measured Ex=6679.38 18.	
6682.84 5	$3/2^{(-)}$		$1.50 \times 10^3 \ 20$	E(level): $E(p)=1548.51$ 9 calculated from measured Ex=6682.84 5.	
	,			Fragment of IAS(⁴⁷ Ti,2549) (1973Sc29).	
6692.86 18	$1/2^{+}$	<0.9 fs	290 50	E(level): $E(p)=1558.82$ calculated from measured Ex=6692.86 18.	
6699	$(3/2^{-})$			E(level): from $E(p)=1565$ (1973Sc29) and $S(p)$ (2021Wa16).	
	(=/=)			J^{π} : arguments of 1973Sc29 considered weak by evaluators due to	
				possible problems in data; see 1986De13 for for discussion.	
				fragment of IAS(⁴⁷ Ti,2549) (1973Sc29).	
6953.4.3	$9/2^{+}$	<7 fs		E(level): $E(p)=1825.9.3$ calculated by 1986De13 from measured	
	~ / =			$E_{x=6953.4}$ 3.	
				$T_{1/2}$: based on the Doppler-shift of primary γ' s deexciting the	
				resonance.	

[†] Bound-state excitation energies and proton resonance energies are from 1986De13. ¹⁸²Ta, ¹⁹²Ir, ⁶⁶Ga, and ¹⁴⁴Ce sources used to obtain energy calibration. S(p)=5167.60 keV 7 (2003Au03). Additional resonances were observed at E(p) [(2J+1) $\Gamma_{\rm p}\Gamma_{\gamma}/\Gamma$, meV; E_x]=655 5 [0.5 5], 952.11 9 [15 5], 1007.6 2, 1062.42 8 [34 11], 1183.3 2 [11 4], 1210.04 9 [100 50], 1222.94 7 [70 20], 1225.09 11 [20 7], 1268.30 7 [360 120], 1823.3 5 [—; 6951.7 5], and 1825.9 3 [—; 6954.3 3]. However, no conclusions could be reached as to their probable spins and parities.

[‡] The arguments of 1986De13 are summarized below for bound-state $J^{\pi'}$ s and in the table above for resonance $J^{\pi'}$ s; trailing $J^{\pi'}$ s enclosed in parentheses are considered less likely based on "weak arguments.".

[#] Averaged values of DSAM data for the bound states; a 20% systematic uncertainty due to the stopping power has been added quadratically with the statistical uncertainty. Lifetimes of resonances from the resonance strength, except as noted.

[@] Absolute strengths were deduced from relative strengths by normalizing to the absolute strengths of the E(p)=735, 1096, and 1127 resonances as obtained in a special experiment.

& From the Adopted Levels, assumed by the 1986De13 in their analysis.

^{*a*} Previously unreported state. 1986De13 used the following procedure to adopt a new state: 1. Energies of feeding and decay gammas are consistent. 2. The state is found in at least two resonances (except for the 4.73-MeV, $9/2^{(-)}$, state which due to the high spin is observed in only one resonance).

^b From decay RUL's.

46 Ti($\underline{\mathbf{p}}, \gamma$) 1993Ca12,1991Ki11,1986De13 (continued)

⁴⁷V Levels (continued)

^c E(p) calibrated on 735-keV resonance.
 ^d Absolute measurement serving as a secondary standard.

 $\gamma(^{47}\mathrm{V})$

Transitions from resonances have been omitted if $I\gamma < 1\%$ and δ has not been determined.

Branching ratios for the 1209-keV resonance are also given by 1986De13 but have not been compiled since no conclusions were reached on the spin and parity of this resonance.

Coincidences for bound-state transitions from 1967Al18 ($\gamma\gamma$ and $\Sigma\gamma\gamma$; NaI, Ge(Li)) or 1970Wi06 ($\gamma\gamma(\theta)$; NaI, Ge(Li)). See 1967Al18 and 1970Wi06 for primary-secondary coincidences.

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{\#}$	Comments
87.525	$5/2^{-}$	87.5	100	$0, 3/2^{-}$	M1+E2	+0.10 6	I_{ω} Mult. δ : from 1970Wi06.
259.486	$3/2^+$	172.0	8 1	87.525 5/2-			
	- 1	259.5	92 1	0. $3/2^{-}$			
660.358	$5/2^{+}$	400.9	29.9 2	259.486 3/2+			
	,	514.5	18.1 2	145.821 7/2-			
		572.8	14.1 3	87.525 5/2-			
		660.4	38.0 <i>3</i>	0. $3/2^{-}$			
1138.55	$7/2^{+}$	478.2	25.0 5	660.358 5/2+			
		879.1	32.5 4	259.486 3/2+	E2(+M3)	-0.03 5	
		992.7	4.4 2	145.821 7/2-			
		1051	38.0 4	87.525 5/2-	D+Q	+0.05 4	
		1139 ^e	< 0.2	0. $3/2^{-}$			
1271.80	9/2-	1126	81.8 <i>I</i>	145.821 7/2-			$I\gamma < 0.1\%$ to other states (≤ 0.66 MeV).
		1184	18.2 <i>1</i>	87.525 5/2-			
1294.96	$11/2^{-}$	1149	100	145.821 7/2-			$I\gamma < 2\%$ to other states (≤ 0.66 MeV).
1660.62	$1/2^{+}$	1000	1.3 <i>I</i>	660.358 5/2+			I γ <0.1% to other states (\leq 1.29 MeV).
		1401	73.4 <i>4</i>	259.486 $3/2^+$			
		1661	25.3 <i>3</i>	0. $3/2^{-}$			
1746.96	9/2+	608.4	17 <i>1</i>	1138.55 7/2+	M1+E2		$I\gamma < 0.5\%$ to other states (≤ 1.29 MeV).
							δ : -0.19 4 or -2.0 1.
		1087	46 1	660.358 5/2+	E2(+M3)	-0.00 3	
10(0.00	2.12+	1601	36.2	145.821 7/2	D(+Q)	+0.00 1	
1968.92	3/2+	308.3	1.4 4	1660.62 1/2+			$1\gamma < 0.2\%$ to other states (≤ 1.66 MeV).
		830.4	0.9 2	1138.55 7/2			
		1309	32 1	660.358 5/21	MI+E2		δ : -0.50 3 or -1.2 1.
		1/09	91	259.486 3/2	M1+E2	0.01.7	δ : -0.36 4 or -11 4.
		1881	54.9 3	87.525 5/2	D(+Q)	-0.01 1	
2002 72	2/2-	1969	2.9 2	0. 3/2	D(+Q)	-0.02 4	
2082.72	3/2	1422	0.3 1	000.358 5/2 ⁻			$1\gamma < 0.2\%$ to other states (≤ 1.75 MeV).
		1937	1./1	145.821 //2	M1 - E2		St. (0.08.2 are 7.1.6
		1995	09.8 2	87.525 5/2	M1+E2		$0: +0.08 \ 2 \ \text{or} -7.1 \ \text{o}.$
2175.86	5/2-	2005	20.1 3	0. 3/2	D+Q		00.03 + 01 + 4.0 9.
21/3.00	3/2	2020	0.5 1	$239.400 \ 3/2^{-1}$			1° (0.170 to other states ($\leq 1.9^{\circ}$ MeV).
		2030	1.0 1	143.821 //2			

From ENSDF

 ${}^{47}_{23}\mathrm{V}_{24}\text{-}6$

$\gamma(^{47}V)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_j^{\pi}$	f Mult. [#]	$\delta^{\#}$	Comments
2175.86	5/2-	2088	21.5 4	87.525 5/2	- M1+E2	+0.56 11	
	-/-	2176	76.5 4	$0. 3/2^{-1}$	- M1+E2		δ : +0.14 1 or -6.7 4.
2211.75	$1/2^{-}$	551.1	0.6 1	1660.62 1/2	+		$I\gamma < 0.3\%$ to other states (≤ 1.97 MeV).
		1952	14.5 2	259.486 3/2	+		, , , , , ,
		2124	4.3 1	87.525 5/2	_		
		2212	80.7 2	0. 3/2	_		
2439.54	$5/2^{+}$	263.7 ^e	< 0.7	2175.86 5/2	_		I γ <0.2% to other states (\leq 2.18 MeV).
		470.6	11 <i>I</i>	1968.92 3/2	+ M1+E2	+0.08 3	
		778.9	0.9 <i>3</i>	1660.62 1/2	+		
		1779	27 1	660.358 5/2	+ M1+E2		δ : -0.42 3 or +6 1.
		2180	36 2	259.486 3/2	+ M1+E2		δ : -0.40 4 or -1.4 <i>I</i> .
		2294	15.4 4	145.821 7/2	– D+Q	+0.06 3	
		2352	2 1	87.525 5/2	-		
		2439	8 1	0. $3/2^{-1}$	– D+Q	+0.05 4	
2722.63	5/2-	1451	0.8 1	1271.80 9/2	_		I γ <0.3% to other states (\leq 2.18 MeV).
		1584	5.2 2	1138.55 7/2	+		
		2463	1.2 2	259.486 3/2	Ŧ		
		2577	20 1	145.821 7/2	-		
		2635	18.4 5	87.525 5/2	- M1+E2	-3.8 10	
0747.10	0/2-	2723	55 1	0. 3/2	M1+E2	+1.9 1	
2/4/.12	9/2	1452	1.8.5	1294.96 11/2	2		$1\gamma < 0.7\%$ to other states (≤ 2.18 MeV).
		14/5	5.3 4	12/1.80 9/2	- M1 E2	0.46.2	
		2601	80 1	145.821 //2	= E2(+M2)	-0.40 2	
2767 22	$(1/2)^{-}$	2000	100	87.525 5/2	- E2(+M3)	-0.01 8	$I_{\rm M} < 20\%$ to other states (22.19 MeV)
2707.52	(1/2) $7/2^+$	2707	100	0. 5/2	+		$1\gamma < 5\%$ to other states (≤ 2.18 MeV).
2810.04	1/2	370 841	0.8 3	2439.34 3/2 1068 02 $2/2^{\circ}$	+ E2(+M2)	0.02.4	1 $\gamma < 0.2\%$ to other states (≤ 2.18 wiev).
		1063	3.2.5 12.1.4	1706.92 $3/21746.96 9/2^{\circ}$	+ M1 + F2	-0.024	
		1538	10.8.3	1771.80 9/2	- D(+0)	± 0.022	
		1671	274	1138 55 7/2	+	10.02 2	
		2149	23.4.3	660.358 5/2	+ M1+E2	-0.29.3	
		2550	2.8.4	259.486 3/2	+	0129 0	
		2664	0.8 4	145.821 7/2	_		
		2722	43 /	87.525 5/2	- D(+O)	+0.01 /	
2984.29	$7/2^{-}$	1712	29.0 5	1271.80 9/2	- M1+E2	+0.15 1	$I_{\gamma} < 0.3\%$ to other states (<2.18 MeV).
		2838	58 1	145.821 7/2	- M1+E2	+0.15 3	,
		2896	12 1	87.525 5/2	- M1+E2		δ : -0.36 3 or -1.5 1.
		2984	1.3 5	0. 3/2	_		
3005.45	$3/2^{-}$	2918	64.5 <i>3</i>	87.525 5/2	– D+Q		I γ <0.3% to other states (\leq 2.18 MeV).
					-		δ : -0.03 6 or -4.1 10.
		3005	35.5 <i>3</i>	0. 3/2	– D+Q		δ : -0.01 8 or +4.1 13.
3054.22	$5/2^{-}$	1307 ^e	<14	1746.96 9/2	+		

7

 ${}^{47}_{23}\mathrm{V}_{24}$ -7

$\gamma(^{47}V)$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{\#}$	Comments
3054.22	5/2-	2908	57 1	145.821 7/2-			
		2966	43 1	87.525 5/2-			
3247.73	7/2-	1072	23 1	2175.86 5/2-	M1+E2	+0.39 3	$I\gamma < 2\%$ to other states (≤ 2.18 MeV).
		1953	12 2	1294.96 11/2-	E2(+M3)	+0.07 8	
		1976	10 1	1271.80 9/2-			
		2109 ^e	<5	1138.55 7/2+			
		3102	18 2	145.821 7/2			
		3160	19 2	87.525 5/2	E2 + M2	0 15 0	
3303 53	3/2	5246 1221	16 2	0. 3/2 2082 72 $3/2^{-1}$	$E_2 + M_3$ D+O	+0.13 9	$I_{\rm W} < 1.2\%$ to other states (<2.18 MeV)
5505.55	5/2	1221	4.5 5	2082.72 3/2	D+Q		δ : +0.03 4 or +3.4 5.
		1335	71	1968.92 3/2+			
		2643	93	660.358 5/2+			
		3044	7.5 4	259.486 3/2+	D+Q		δ : -0.11 4 or +7 2.
2255 40	5/2+	3216	71.2	87.525 5/2	D+Q	.0.00.10	$\partial : -0.05 \ 2 \ \text{or} -3.7 \ 3.$
3355.49	5/21	2095	18 1	$000.358 \ 5/2^{+}$	D(+Q)	+0.09 10	$1\gamma < 2\%$ to other states (≤ 2.18 MeV).
		3090	/ 6 <i>I</i> / 1 /	$239.480 \ 3/2$	D+Q	10.06.8	$0. +0.08 \ 2 \ 01 - 5.5 \ 5.$
2262 65	1/2(-)	1280	+.1 +	0. 3/2	$D(\pm Q)$	+0.00 8	$I_{\rm M} < 0.8\%$ to other states (<2.18 MeV)
5502.05	1/2	3363	98.1 <i>3</i>	$0. 3/2^{-1}$			$1/(0.0\%)$ to other states (≤ 2.18 WeV).
3370.52	1/2,3/2,5/2+	1288	2.9 5	2082.72 3/2-			$I\gamma < 0.9\%$ to other states (≤ 2.18 MeV).
		1401	51	1968.92 3/2+			
		3111	28 1	259.486 3/2+			
		3283 ^e	<8	87.525 5/2-			
		3370	64 1	0. 3/2-			
3370.56	3/2	3283	65 2	87.525 5/2-	D+Q		$1\gamma < 0.5\%$ to other states (≤ 2.18 MeV).
		2270	25.2	0 2/2-			$\delta: +0.2 I \text{ or } < -2.0.$
2517.09	5/2(-)	2271	22 2	0. 3/2	D+Q		0. 0.0 I 01 <-0.3.
5517.08	3/2	33/1	33 3	143.821 7/2	D+Q		δ : +0.09 6 or <-25.
		3429	50 3	87.525 5/2-			
2524 60	= /2±	3517	92	$0. 3/2^{-1}$	$\mathbf{D}(\mathbf{A})$	0.02.2	
3524.60	7/2+	2386	31.8 4	$1138.55 \ 7/2^+$	D(+Q)	$-0.02\ 2$	$1\gamma < 0.2\%$ to other states (≤ 2.18 MeV).
		2864	$\frac{00.}{4}$	$000.358 \ 5/2^{+}$	D(+Q) E2 + M2	-0.01 2	
2500 25	5/2(-)	3203	1.0.3	$239.400 \ 3/2^{-1}$	E2+1VI3	± 0.100	$I_{\rm ev} < 1.20\%$ to other states (< 2.18 MeV)
5590.55	3/2	3444 3503	18 2	143.821 7/2			$1\gamma < 1.5\%$ to other states (≤ 2.18 lyrev).
		3590	73 4	$0^{-3/2}$	D+O		δ : +0.06 4 or -3.3.7
3659.71	(7/2)	2388	35.3	$1271.80 \ 9/2^{-1}$	D X		$I_{\nu} < 1.1\%$ to other states (<2.18 MeV).
2.027.11	(.,=)	2999	22 2	660.358 5/2+			
		3400 ^e	<5	259.486 3/2+			

 ∞

_

$\gamma(^{47}V)$ (continued)

3659.71 $(7/2)$ 3572 23 I 87.525 $5/2^ 3694.4$ $5/2^{(+)}, (3/2^+)$ 3034 16 I 660.358 $5/2^+$ $I\gamma < 2\%$ to other states (≤ 2.18 MeV). 3435 72 2 259.486 $3/2^+$ $D+Q$ $\delta: +0.11$ 7 or -8 2 if $J_i = 5/2$. 3718.0 $7/2$ ($5/2$ $9/2^+$) 3572 100 145 821 $7/2^ D+Q$ 3718.0 $7/2$ ($5/2$ $9/2^+$) 3572 100 145 821 $7/2^ D+Q$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
37180 $7/2(5/20/2^+)$ 3572 100 $1/5821$ $7/2^-$ D 0 $500/2$ $800/2$ $800/2$ $200/2$	
J = 10.0 $I = 1/2, J = 2, J = 2, J = 1, J$	
3630^e <20 87.525 5/2 ⁻	
3718^e <14 0. $3/2^-$	
3721.29 7/2 2583 19 <i>I</i> 1138.55 7/2 ⁺ $I\gamma < 1.1\%$ to other states (≤ 2.18 MeV).	
3061 74 <i>I</i> 660.358 $5/2^+$ D(+Q) +0.02 <i>2</i> δ : see 1986De13 for other value considered very unlikely.	
3462 1.5 4 259.486 $3/2^+$	
3634 5.1 5 87.525 5/2 ⁻	
3762.7 $1/2,3/2,5/2$ 3102 17 4 660.358 $5/2^+$ Iy <3% to other states (≤ 2.18 MeV).	
3675 29.4 87.525 5/2-	
3763 13 7 0. $3/2^{-1}$	
3773.4 (1/2) $3686^e < 20$ $87.525 5/2^ I\gamma < 6\%$ to other states (≤ 2.18 MeV).	
3773 100 0. 3/2-	
3822.6 $1/2,3/2$ 1740 3 <i>l</i> 2082.72 3/2 $I_{\gamma < 1.4\%}$ to other states (≤ 2.18 MeV).	
$2162 ext{ } 6 ext{ } 7 ext{ } 1660.62 ext{ } 1/2^{+}$	
3563 18 2 259.486 $3/2^{+}$	
3822 70 3 0. $3/2^{-1}$	
$\frac{3869.0}{5/2} = \frac{5}{2} \frac{5}{2} \frac{5}{2} \frac{660.358}{5/2} \frac{5}{2} \frac{5}{2} \frac{1}{\gamma} \frac{1}{5} 1$	
$3609 ext{ 11 } 1 ext{ 259,486 } 3/2'$	
3/23 80 1 145.821 //2 D(+Q) -0.01 5	
5/61 51 $6/.25$ $5/22875 75 5/2 (2/2^{-}) 1702 27 2/2^{-} 15\times 23\% to other states (< 2.18 MeV)$	
$5675.75 - 572.(572) = 1795 - 272 - 2082.72 - 572 - 77556 to other states (\leq 2.16 MeV).$	
$3/29$ 38 3 145.821 $1/2^{-7}$ D+Q $3: -0.12$ or <-2 if $J_i = 5/2$.	
$38/5$ $35/3$ $0.$ $3/2$ D+Q $3: -0.2/7/2$ or $(-0.6 \text{ if } J_i = 5/2)$	
$58/6.0$ //2 1/95° <11 2082.72 3/2 1/94% to other states (≤ 2.18 MeV).	
2581 75 1294.96 11/2 1172	
$\frac{5786}{2200} = \frac{270}{12} = \frac{578}{2} = \frac{17}{12} =$	
$5390.1 \le 5/2$ 2229 12.5 100.02 1/2 1/2 1/2 1/2 1/2 22.16 MeV.	
32.50 < 0 000.38 3/2	
370^{4} $^{-6}$ $145.821.7/2^{-}$	
3/44 <0 143.021 //2 3800^{6} <6 97.525 5/2	
3800^{ℓ} <7 0 3/2 ⁻	
$3892.26 - 3/2(5/2^+) = 1716 - 9.1 - 2175.86 - 5/2^-$ Iv < 2% to other states (< 2.18 MeV)	
$1810 2 1 2082 72 3/2^{-1}$	
$3633 66 2 259.486 3/2^+$	
$3952.6 7/2,(5/2^{-}) \qquad 2292^{e} < 16 \qquad 1660.62 1/2^{+} \qquad I_{\nu} < 4\% \text{ to other states } (<2.18 \text{ MeV}).$	

9

From ENSDF

γ ⁽⁴⁷ V) (continued)												
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{\#}$	Comments					
3952.6	7/2,(5/2 ⁻)	2681	13 <i>3</i>	1271.80 9/2-	D+Q		Mult.: if $J_i = 7/2$.					
		0014	24.5	1120 55 7/0+	DIO		δ : -0.34 35 or -2.3 11 if $J_i = 7/2$.					
		2814	24.5	$1138.55 \ 1/2^{+}$	D+Q		$\partial := -0.02 25 \text{ or } -0.9 4.$					
		3292 2602	5/0	$000.338 \ 3/2^{+}$	D+Q		$0: +0.01 \ 10 \ 0f \ -4.1 \ 15.$					
		2095 2045	< 3	239.460 3/2								
		2052	< 3	0/.323 3/2 0 2/2 ⁻								
2058 7	3/2+	3932 1876	<0 131	0. 3/2			$I_{\rm M} < 1.3\%$ to other states (<2.18 MeV)					
1930.1	5/2	1000	+.5 + 21	$1068 02 3/2^+$			$1/(1.5\%)$ to other states (≤ 2.16 MeV).					
		3298	24^{2}	660 358 5/2 ⁺								
		3699	29 2	259.486 3/2+	M1+E2	-1.3.5						
		3959	40 1	$0. 3/2^{-1}$	D(+O)	-0.10 15	δ : +6.3 excluded by $\Delta \pi$ and comparison to RUL.					
3984.97	7/2,(3/2 ⁺ ,5/2 ⁺)	2846	4 1	$1138.55 7/2^+$	2(1,2)	0110 10	$I\gamma < 4\%$ to other states (≤ 2.18 MeV). Decays from this state are contaminated.					
		3324	48 2	660.358 5/2+								
		3725 ^e	<44	259.486 3/2+								
		3897	51	87.525 5/2-								
1080.60	3/2+	3420	92	660.358 5/2+			$I\gamma < 2\%$ to other states (≤ 2.18 MeV).					
		3821	59 <i>3</i>	259.486 3/2+	M1+E2		δ : -0.15 3 or +9 3.					
		3993	25 2	87.525 5/2-	-	-						
4099.06	5/2-,(3/2-)	3839	11 <i>1</i>	259.486 3/2+	$D(+Q)^{(a)}$	0.00 [@] 11	I γ <2% to other states (\leq 1.29 MeV).					
		3953	30 1	145.821 7/2-	D+Q [@]		δ : -0.04 8 or <-0.7 if J _i =5/2.					
		4011	4 1	87.525 5/2-								
		4099	35 1	0. $3/2^{-}$								
4100.31	3/2-	3841	91	259.486 3/2+	D+Q		$I\gamma < 2\%$ to other states (≤ 2.18 MeV).					
							δ : +0.30 9 or <-0.3.					
		4013	14 1	87.525 5/2-	D+Q		δ : -0.04 13 or -4 +1-4.					
1110.10	2/2 (1/2 5/2)	4100	56 2	0. $3/2^{-}$								
118.12	3/2,(1/2,5/2)	4118	50 4	0. 3/2			$1\gamma < 3\%$ to other states (≤ 1.75 MeV).					
4150.35	5/2()	4004	13 1	145.821 7/2			$1\gamma < 0.7\%$ to other states (≤ 1.97 MeV).					
		4063	3/1 501	87.525 5/2								
4107.2	5/2(-)	4150	50 I	0. 3/2			$L_{\rm e} \sim 20\%$ to other states (<2.18 MeV)					
4197.5	5/2	4051	<24	145.821 //2			$1\gamma < 2\%$ to other states (≤ 2.18 MeV).					
1207 10	3/2(1/25/2)	4197	454 308	0. 3/2 1068 02 3/2+								
1207.10	$J_{1} = (1/2, J_{1}/2)$	2230 2546 <mark>0</mark>	-5 -5	1500.52 5/2 1660.62 $1/2^+$								
		2040 3068	<7	1138 55 7/2+								
		3547 ^e	<7	660 358 5/2+								
		3947	29.8	259 486 3/2+								
		4061 ^e	<10	$145.821 7/2^{-1}$								

 $^{47}_{23}\mathrm{V}_{24}$ -10

$\gamma(^{47}V)$ (continued)

E_i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f J_f^{π}	Mult. [#]	Comments
4207.10	3/2,(1/2,5/2)	4119 ^e	<5	87.525 5/2-	-	
		4207 ^e	<10	0. $3/2^{-1}$	_	
4222.48	5/2	4135	32 2	87.525 5/2-	-	$I\gamma < 3\%$ to other states (≤ 2.08 MeV).
		4222	60 2	0. 3/2-	- D+Q	δ : -0.16 5 or -2.1 3.
4271.60	$7/2,(3/2^+,5/2^+)$	2189 ^e	<3	2082.72 3/2-	-	
		2611 ^e	<11	1660.62 1/2+	F	
		3611	16 <i>3</i>	660.358 5/2+	F	
		4012	24 <i>3</i>	259.486 3/2+	F	
		4126 ^e	<3	145.821 7/2-	-	
		4184 ^e	<4	87.525 5/2-	-	
		4272 ^e	<3	0. $3/2^{-1}$	-	
4271.75	(1/2)	2611	13 2	$1660.62 1/2^{+}$	+	$I\gamma < 2\%$ to other states (≤ 2.18 MeV).
		4012 ^e	<13	259.486 3/2+	F	
		4272	24 4	0. 3/2-	_	
4345.19	$(1/2^{+})$	2169 ^e	<4	2175.86 5/2	_	$1\gamma < 3\%$ to other states (≤ 1.97 MeV).
		2262	10 3	2082.72 3/2	_	
		3685	29.2	660.358 5/2 ⁺	+	
		4086	20.3	259.486 3/2	-	
1202.00	2/2 (1/2=)	4345	14.2	0. 3/2	_	
4392.80	3/2,(1/2)	424/	<4	145.821 7/2	_	$1\gamma < 1.2\%$ to other states (≤ 2.18 MeV).
		4305	24 4	87.525 5/2	_	
4402 6	7/2 (5/2 0/2)	4393	15 2	$0. \frac{3}{2}$	n-	
4402.0	1/2,(5/2,9/2)	2120	<10	1294.90 11/2		St. 0.10.15 cm < 2.16 $I = 7/2$
		2150 2264	42 13	12/1.60 9/2	D+Q	00.10 IS of <-2 II $J_1 = 1/2$.
		3204 3742	<23	660 358 5/2 ⁺	F	
		11/3 ^e	<13	$250.486 3/2^+$	F	
		4145 1257 <mark>6</mark>	<13	$239.400 \ 3/2$ 145.821 7/2	_	
		4315 ^e	<13	87 525 5/2-	-	
		4402 ^e	<14	$0 3/2^{-1}$	-	
4406 4		3746 ^e	<6	660 358 5/2+	F	
1100.1		4147	30.5	259 486 3/2+	F	
		4260 ^e	<5	$145\ 821\ 7/2^{-1}$	_	
		4319 ^e	<5	87.525 5/2-	-	
		4406 ^e	<11	$0. 3/2^{-1}$	_	
4453.7	7/2	2793 ^e	<3	1660.62 1/2+	F	$I\gamma < 2\%$ to other states (≤ 2.08 MeV).
	,	3159 ^e	<15	1294.96 11/2	2-	
		3315	16 2	1138.55 7/2+	+ D+Q	δ : -0.29 7 or <-0.6 given by 1986De13 for 3793 γ assumed to belong to this transition since 3793 γ was not observed (evaluator)
		3793 ^e	<9	660.358 5/2+	F	since 57557 was not observed (evaluator).

11

 $^{47}_{23}\mathrm{V}_{24}\text{--}11$

⁴⁶ Ti(p,γ) 1993Ca12,1991Ki11,1986De13 (continued)														
	γ ⁽⁴⁷ V) (continued)													
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]		Comments						
4453.7	7/2	4308 4366 ^e 4453 ^e	24 <i>4</i> <5 <5	145.821 87.525 0.	7/2 ⁻ 5/2 ⁻ 3/2 ⁻									
4509.52	7/2,(3/2,5/2 ⁺)	3849	63 8	660.358	5/2+	D+Q	Iγ<5% to g.s. and 145.8 state. δ : +0.02 7 or -4 <i>l</i> if J _i =7/2.							
4510.01	5/2,(3/2 ⁻)	4422 4510	50 9 31 2	87.525 0.	5/2 ⁻ 3/2 ⁻		$I\gamma < 3\%$ to other states (≤ 0.66 MeV).							
4514.5	3/2,(1/2,5/2 ⁻)	3854 ^e 4255 ^e 4368 ^e 4427 ^e	<16 <16 <17 <17	660.358 259.486 145.821 87.525	$5/2^+$ $3/2^+$ $7/2^-$ $5/2^-$ $2/2^-$									
4543.02	3/2,(1/2,5/2 ⁺)	4283 4543	89 <i>3</i> 11 <i>3</i>	0. 259.486 0.	$3/2^+$ $3/2^-$		I γ <7% to other states (\leq 0.66 MeV).							
4568.68	5/2	4568	73 4	0.	$3/2^{-}$		I γ <5% to other states (\leq 0.66 MeV).							
4694.33	5/2+,(3/2+)	4435	51 4	259.486	3/2+	M1+E2 [@]	$I\gamma < 3\%$ to g.s. and 87.5 state. $\delta: -0.29$ 7 or -1.6 2 if $J_i = 5/2$.							
4719.2	3/2,(1/2,5/2 ⁻)	2543 2636 2750 ^e 3058 ^e 4631	35 3 20 9 <7 <11 14 4	2175.86 2082.72 1968.92 1660.62 87.525	5/2 ⁻ 3/2 ⁻ 3/2 ⁺ 1/2 ⁺ 5/2 ⁻		I γ <4% to other states (\leq 1.75 MeV).							
4733.8	9/2 ⁽⁻⁾	3444 3464 3594 ^e 4588 ^e 4646 ^e 4734 ^e	46 7 23 9 <8 <7 <7 <7	1294.96 1271.80 1138.55 145.821 87.525	11/2 ⁻ 9/2 ⁻ 7/2 ⁺ 7/2 ⁻ 5/2 ⁻ 3/2 ⁻	D+Q	δ : -0.04 9 or <-5.							
4792.9	1/2,3/2	2710 4647 ^e 4705 ^e 4793	17 3 <6 <7 68 7	2082.72 145.821 87.525	$3/2^{-}$ $3/2^{-}$ $5/2^{-}$ $3/2^{-}$		I γ <6% to other states (\leq 2.18 MeV).							
4796.8	3/2,(1/2 ⁻ ,5/2 ⁻)	2585 2714 4709 4797	3 <i>I</i> 21 2 9 2 49 3	2211.75 2082.72 87.525 0.	$1/2^{-}$ $3/2^{-}$ $5/2^{-}$ $3/2^{-}$		I γ <4% to other states (\leq 2.18 MeV).							
4807.30	5/2	4147 4548 ^e 4661 4720 ^e	24 6 <5 26 4 <6	660.358 259.486 145.821 87.525	5/2+ 3/2+ 7/2 ⁻ 5/2 ⁻	D+Q	δ : +0.06 20 or <-3.5.							

 $^{47}_{23}\mathrm{V}_{24}\text{--}12$

From ENSDF

 ${}^{47}_{23}\mathrm{V}_{24}$ -12

⁴⁶ Ti(p,γ) 1993Ca12,1991Ki11,1986De13 (continued)											
						2	(47V) (contin	ued)			
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ#	Comments			
4807.30 4852.5	5/2 5/2,(1/2 ⁻ ,3/2 ⁻)	4807 ^e 4192 ^e 4593 4706 ^e 4765 4852 ^e	<4 <6 31 4 <6 18 4 <6	0. 3 660.358 5 259.486 3 145.821 7 87.525 5 0. 3	3/2 ⁻ 5/2 ⁺ 3/2 ⁺ 7/2 ⁻ 5/2 ⁻ 3/2 ⁻						
4907.6	5/2,(3/2 ⁺ ,7/2 ⁺)	3769 ^e 4247 4648 ^e	<12 69 5 <6	1138.55 7 660.358 5 259.486 3	7/2 ⁺ 5/2 ⁺ 3/2 ⁺	D(+Q) [@]	+0.6 [@] 10	I γ <3% to other states (\leq 0.15 MeV).			
4955.12	1/2,3/2,5/2+	4295 ^e 4695 4809 ^e 4867 ^e 4955 ^e	<10 78 <i>11</i> <14 <15 <17	660.358 5 259.486 3 145.821 7 87.525 5 0. 3	5/2+ 3/2+ 7/2 ⁻ 5/2 ⁻ 3/2 ⁻						
4976.5 4998.7	5/2,(7/2)	4976 4338 ^e 4739 ^e 4852 4911 4998 ^e	22 2 <13 <13 20 9 49 12 <13	$\begin{array}{c} 0. \\ 660.358 \\ 259.486 \\ 145.821 \\ 87.525 \\ 0 \end{array}$	3/2 5/2 ⁺ 3/2 ⁺ 7/2 ⁻ 5/2 ⁻ 3/2 ⁻			$1\gamma < 4\%$ to other states (≤ 0.66 MeV).			
5016.0	3/2,(5/2+)	4355 ^e 4756 ^e 4870 ^e 4928 ^e	<14 <6 <6 <7	660.358 5 259.486 3 145.821 7 87.525 5	5/2 ⁺ 3/2 ⁺ 7/2 ⁻ 5/2 ⁻	D. 08		s 0.00 /s			
5108.65	1/2,3/2,5/2+	5016 4448 ^e 4849 ^e 4962 ^e 5021 ^e 5108	43 0 <13 <13 <15 <13 54 25	0. 3 660.358 5 259.486 3 145.821 7 87.525 5 0. 3	3/2 5/2+ 3/2 ⁺ 7/2 ⁻ 5/2 ⁻ 3/2 ⁻	D+Q~		$o: -0.02 \text{ IS or } <-3 \text{ II } J_1 = 3/2.$			
5123.86	7/2,(5/2+)	3376 3985 4463	17 <i>3</i> 24 <i>3</i> 38 <i>12</i>	1746.96 1138.55 660.358	9/2+ 7/2+ 5/2+			I γ <5% to other states (\leq 1.97 MeV and 2.18 MeV).			
5142.16	3/2,(1/2 ⁻ ,5/2 ⁻)	4481 ^e 4882 ^e 4996 ^e 5054 ^e 5142	<8 <9 <11 <12 100	660.358 5 259.486 3 145.821 7 87.525 5	5/2+ 3/2+ 7/2 ⁻ 5/2 ⁻ 3/2 ⁻						
5222.71	3/2,(5/2 ⁺)	4562 ^e	<21	660.358 5	5/2+						

From ENSDF

				⁴⁶ Ti(p ,γ) 1993	Ca12,1991	Ki11,1986De13 (continued)
						$\gamma(^{47}V)$ (co	ontinued)
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	${\rm I}_{\gamma}^{\ddagger}$	\mathbf{E}_{f}	J_f^π	Mult. [#]	Comments
5222.71	3/2,(5/2+)	4963 ^e 5076 ^e 5135 ^e	<21 <23 <13	259.486 145.821 87.525	3/2 ⁺ 7/2 ⁻ 5/2 ⁻	0_	
5240.0	5/2 ⁽⁺⁾ ,(3/2 ⁺ ,7/2 ⁺)	5222 4579	64 24 76 3	0. 660.358	3/2 ⁻ 5/2 ⁺	D+Q ^{&} D+Q [@]	$ δ: -0.3 2 \text{ or } <-3 \text{ if } J_i = 3/2. $ Iγ<3% to other states (≤1.14 MeV). δ: -0.03 8 or +1.8 4 if I = 5/2
5635.8	3/2-	3424	8	2211.75	$1/2^{-}$	D+Q	$\lambda_2 = -0.66 \ 20$ $\delta_2 = -0.07 \ 17 \ \text{or} \ -1.5 \ 5.$
		3553	37	2082.72	3/2-	D+Q	$A_2 = 0.53 \ I0$ δ : +0.08 8 or +2.9 7.
		3975	6	1660.62	$1/2^{+}$		
		5548	30	87.525	5/2-	D+Q	$\begin{array}{l} A_2 = 0.05 \ 14 \\ \delta: \ -0.14 \ 15 \ \text{or} \ -2.8 \ 10. \end{array}$
		5635	19	0.	$3/2^{-}$		
5738	1/2,3/2	3562	4	2175.86	5/2-		
		4077	9	1660.62	1/2+	D+Q	$A_2 = -0.21 \ I4$ $\delta: +0.15 \ 8 \ \text{or} \ -2.5 \ 6.$
		5077	11	660.358	$5/2^{+}$		
		5478	72	259.486	3/2+	D+Q	$A_2 = -0.16 \ 9$ $\delta: -0.38 \ 8 \ or < -5.$
		5650	4	87.525	5/2-		
5853.58	$1/2^{(-)}$	2080	1.9	3773.4	(1/2)		$\Sigma I \gamma = 3.3\%$ to other bound states.
		2091	1.0	3762.7	1/2,3/2,5/2		
		2482.69	8.1	3370.56	3/2		
		3641	23	2211.75	$1/2^{-}$		
		3770	58	2082.72	3/2-		
		5593	2.8	259.486	3/2+		
		5853	1.3	0.	3/2-		
5885.4	3/2	2295	3	3590.35	$5/2^{(-)}$	D+Q	$A_2 = -0.13 \ 17$ $\delta: +0.02 \ 15 \text{ or } < -3.$
		3445	8	2439.54	5/2+	D+Q	$A_2 = -0.04 \ 11$ $\delta: -0.05 \ 10 \text{ or } -3.7 + 12 - 25.$
		3673	13	2211.75	$1/2^{-}$	D+Q	$A_2 = -0.36 \ 9$ δ : +0.08 5 or -2.1 3.
		3802	6	2082.72	3/2-	D+Q	$A_2=0.28 \ I3$ $\delta: -0.07 \ 9 \text{ or } +5.3 \ +48-18.$
		4224	12	1660.62	$1/2^{+}$	D+Q	$A_2 = -0.44 \ 8$ δ : +0.02 5 or -1.8 2.
		5797	37	87.525	5/2-	D+Q	$A_2 = 0.04 9$ $\delta_1 = 0.13 9 \text{ or } -2.8 7$
		5885	21	0.	3/2-	D+Q	$A_2=0.41$ 19 δ : -0.02 13 or +3.6 +33-13.

 ${}^{47}_{23}\mathrm{V}_{24}$ -14

							$\gamma(^{47}V)$ (c	ontinued)	
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	Iγ [‡]	E_f	${ m J}_f^\pi$	Mult. [#]	δ [#]	Comments	
5887.17	$1/2^{(-)}$	3675	2.1	2211.75	1/2-			$\Sigma I\gamma = 3.4\%$ to other bound states.	
		3804	14	2082.72	3/2-				
		4226	3.5	1660.62	$1/2^{+}$				
		5887	77	0.	3/2-				
5894.77	1/2	2590	1.1	3303.53	3/2			$\Sigma I\gamma = 4.2\%$ to other bound states.	
		3682	6.2	2211.75	$1/2^{-}$				
		3811	7.4	2082.72	$3/2^{-1}$				
		4233	3/	1660.62	$1/2^{+}$				
		5804	24	239.480	3/2				
5061 /	1/2	J694 1600 25	1 2	0. 4271.60	$\frac{3}{2}$			$\Sigma I_{2} = 4.0\%$ to other bound states	
3901.4	1/2	1844	1.2	4118 12	$\frac{7}{2}, (\frac{5}{2}, \frac{5}{2})$			$21\gamma - 4.0\%$ to other bound states.	
		2070	2.9	3892.26	3/2,(1/2,3/2) $3/2(5/2^+)$				
		3750	20	2211.75	$1/2^{-}$				
		3993	15	1968.92	$3/2^+$				
		4301	20	1660.62	$1/2^{+}$				
		5702	7.0	259.486	3/2+				
		5962	28	0.	3/2-				
5994.5	3/2	2171	1.6	3822.6	1/2,3/2				
		2221	1.0	3773.4	(1/2)				
		2623.54	1.0	3370.56	3/2				
		2989	2.3	3005.45	3/2-	D.O		A 0.40.10	
		3227	4.9	2767.32	(1/2)	D+Q		$A_2 = -0.40 \ I0$	
		3271	4.0	2722 63	5/2-			$0: +0.05 \ 0 \ 0r -2.0 \ 3.$	
		3554	4.9	2722.03	5/2+	$D \perp O$		$A_{2} = 0.03.20$	
		5554	2.0	2439.34	5/2	D∓Q		$\delta = -0.0520$ $\delta = -0.13 \text{ or } -2.9 + 15 - 45$	
		3782	43	2211 75	1/2-	D+O		$A_{2} = -0.92.15$	
		0,02	1.0		-, -	- · X		δ : -0.4 2 or -0.8 +6-3.	
		3818	17	2175.86	5/2-				
		3911	2.4	2082.72	3/2-				
		4333	4.2	1660.62	1/2+	D(+Q)	+0.07 8	A ₂ =-0.38 14	
		5333	28	660.358	5/2+	D(+Q)	+0.03 3	$A_2 = -0.13 \ 3$	
		5734	21	259.486	3/2+	D+Q	-0.05 3	A ₂ =0.32 4	
		5994	6	0.	3/2-	D+Q		$A_2 = -0.33 9$	
(004.17	1/0-	1005	1.2	470 4 0	2/2 (1/2- 5/2-)			$\delta: -0.54 \ 10 \text{ or } -4 \ 1.$	
6024.17	$1/2^{-}$	1227	1.3	4796.8	$5/2,(1/2^-,5/2^-)$			$21\gamma=3.1\%$ to other bound states.	
		2201	1.2	3822.6	1/2, 3/2				
		2001	3.1	3362.65	$1/2^{-1}$				
		30/1 30/1	3.7 16	2211.73	$\frac{1}{2}$				
		1051	10	2002.72	$\frac{3}{2}$				

	⁴⁶ Ti(p,γ) 1993Ca12,1991Ki11,1986De13 (continued)											
							$\gamma(^{47}V)$ (6	continued)				
E:(level)	Iπ	F₂,†	L.‡	Ex	\mathbf{I}^{π}	Mult [#]	<u>ہ</u>		Comments			
	<i>s_i</i>	<u> </u>	<u></u>		<u> </u>				Comments			
6024.17	$1/2^{-}$	5935	2.2	87.525	5/2-							
(007 (0	= 10(+)	6023	63	0.	3/2							
6087.60	5/2(*)	1805	1.3	4222.48	$\frac{5}{2}$		0.04.2	$21\gamma=0.1\%$ to other bound states.				
		2155	4.0	3932.0	(7/2)	D+Q	-0.04 3	$A_2 = -0.08 \ 4$				
		3082	1.1	3005 45	(1/2) $3/2^{-}$							
		3648	33	2439.54	5/2+	D(+O)	-0.02 2	A ₂ =0.43 2				
		3911	1.0	2175.86	5/2-			2				
		4118	1.0	1968.92	3/2+							
		4340	2.0	1746.96	9/2+			A ₂ =0.11 <i>13</i>				
		4948	8	1138.55	7/2+	(D+Q)		$A_2 = -0.87 \ 3$				
					I			δ : +0.62 6 or +2.1 2.				
		5427	35	660.358	5/2+	(D+Q)	+0.234	$A_2 = 0.64 3$				
		5041	4	259.480	3/2'	(D+Q)	+2.05	$A_2 = 0.88 8$				
		5941 5000	0.8	87 525	1/2 5/2-	D(+Q) D(+Q)	+0.11 10 -0.2.2	$A_2 = -0.52\ 20$ $A_2 = -0.25\ 19$				
		6087	5	0	$\frac{3}{2}$	D(+Q) D+O	-0.22	$A_2 = -0.53 \ 10$				
6122.24	$1/2^{(+)}$	2163	82	3958 7	$3/2^+$	DIQ	0.07 0	$\Sigma I_{\chi} = 5.2\%$ to other bound states				
0122.21	1/2	3354	1.4	2767.32	$(1/2)^{-}$			217 = 5.2% to other bound states.				
		3910	4.4	2211.75	$1/2^{-}$							
		4039	8.1	2082.72	3/2-							
		4153	7.6	1968.92	3/2+							
		4461	45	1660.62	$1/2^{+}$							
		5862	18	259.486	3/2+							
(100 77	1.0+	6121	1.8	0.	3/2-							
6132.77	1/2*	2761.83	1.5	33/0.50	$\frac{3}{2}$			$\Sigma 1\gamma = 5.4\%$ to other bound states.				
		2701.07	J.J 1.9	2262.65	1/2, 3/2, 3/2 1/2(-)							
		2770	1.0 5.7	3302.05	1/2 3/2							
		3693	4.2	2439.54	$5/2^+$							
		3920	3.7	2211.75	$1/2^{-}$							
		4163	12	1968.92	3/2+							
		5472	11	660.358	5/2+							
		5873	14	259.486	3/2+							
		6132	35	0.	3/2-							
6157.69	$(5/2^+)$	2199	1.5	3958.7	3/2+			$\Sigma I \gamma = 3.0\%$ to other bound states.				
		2463	4.8	3694.4	$5/2^{(+)}, (3/2^{+})$							
		2802	1.0	5555.49 2420.54	5/2 ' 5/2+							
		<i>J</i> /10 <i>A</i> 188	5.5 4 1	2439.34 1968 97	$\frac{3}{2}$							
		5018	29	1138 55	$\frac{3}{2}$							
		2010	_/	1120.22	• / -							

н

	⁴⁶ Ti(p ,γ) 1993Ca12,1991Ki11,1986De13 (continued)											
							$\gamma(^{47}V)$	(continued)				
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	$\delta^{\#}$	Comments				
6157.69	$(5/2^+)$	5497	17	660.358	5/2+							
		5897	25	259.486	3/2+							
		6069	3.5	87.525	$5/2^{-}$							
		6157	6.3	0.	3/2-							
6166.36	$3/2^{(-)}$	1656	1.0	4510.01	5/2,(3/2 ⁻)			$\Sigma I\gamma = 8.3\%$ to other bound states.				
		1894.4	1.4	4271.75	(1/2)							
		1969	1.2	4197.3	$5/2^{(-)}$							
		2016	1.8	4130.33	3/2-							
		2795	4.5	3370.56	3/2							
		2803	2.2	3362.65	$1/2^{(-)}$							
		3160	8.7	3005.45	$3/2^{-}$							
		3443	1.3	2707.52	(1/2) $5/2^{-}$							
		3954	34	2211.75	1/2-							
		3990	4.1	2175.86	5/2-							
		4083	3.1	2082.72	$3/2^{-}$							
		6078	2.2 7.7	87.525	$5/2^{-}$							
6190.76	(3/2)	1622	1.3	4568.68	5/2			$\Sigma I\gamma = 5.2\%$ to other bound states.				
		1968	1.3	4222.48	5/2							
		3185	1.9	3005.45	$3/2^{-}$							
		3423	1.0	2707.52	(1/2) $5/2^{-}$							
		4014	1.3	2175.86	5/2-							
		5530	11	660.358	5/2+							
		5930 6102	47	259.486	3/2 ⁺ 5/2 ⁻							
		6190	23	0.	3/2-							
6229.72	$5/2^{+}$	1213	0.7	5016.0	3/2,(5/2+)	D(+Q)	+0.03 3	A ₂ =-0.33 7				
		1525	14	4604.22	5/0+ (2/0+)	$\mathbf{D}(\cdot, \mathbf{O})$. 0. 00. 0	$\Sigma I\gamma = 2.8\%$ to other bound states.				
		1535	1.4	4694.33	$5/2^{\circ}, (3/2^{\circ})$ $5/2^{(-)}$	D(+Q) D(+Q)	+0.088	$A_2=0.55\ 0$				
		2032	0.3	4150.35	$5/2^{(-)}$	D(+Q) D(+O)	+0.13	$A_2 = 0.55 \ 20$ $A_2 = 0.21 \ 20$				
		2360	4.1	3869.0	5/2	D(+Q)	-0.03 3	A ₂ =0.41 3				
		2508	1.7	3721.29	7/2	D+Q		A ₂ =0.05 5				
		2511	0.6	3710 0	$7/2(5/20/2^{+})$	DLO		$\delta: -0.14 \ 4 \ \text{or} -3.9 \ 6.$				
		2311	0.0	5/18.0	1/2,(3/2,9/2)	D+Q		$\delta_{2} = -0.13 \ 11 \text{ or } -4 \ 1.$				
		2570	1.0	3659.71	(7/2)	D+Q		A ₂ =-0.63 8				
								δ : +0.37 8 or +4 1.				

From ENSDF

 ${}^{47}_{23}\mathrm{V}_{24}$ -17

 $^{47}_{23}\mathrm{V}_{24}\text{--}17$

$\gamma(^{47}V)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ι _γ ‡	E_{f}	J_f^π	Mult. [#]	δ#	Comments
6229.72	5/2+	2705 2926 2224	1.5 1.2	3524.60 3303.53 3005.45	7/2+ 3/2 3/2 ⁻	D(+Q)	+0.01 2	A ₂ =-0.38 3
		3419	2.0	2810.04	$\frac{3}{2}$	D+O	+0.05.1	$A_{2} = -0.22$ 1
		3790	14	2439.54	$5/2^+$	D+Q	$+0.04\ 2$	$A_2 = 0.48 2$
		4053	4.6	2175.86	5/2-	D(+Q)	+0.04 4	$A_2 = 0.48 \ 3$
		4147	2.0	2082.72	3/2-	D(+Q)	-0.01 2	$A_2 = -0.41 \ 4$
		4260	23	1968.92	3/2+	D+Q	-0.15 1	$A_2 = -0.66 l$
		4482	1.9	1746.96	9/2+	Q(+O)	-0.02 4	A ₂ =0.22 5
		4569	0.5	1660.62	$1/2^{+}$	Q+O	-0.09 7	A ₂ =0.40 15
		5569	2.9	660.358	5/2+	D+Q		$A_2 = -0.075$
								δ : -0.45 5 or +4 1.
		5970	2.8	259.486	3/2+	D+Q	$-2.75\ 10$	$A_2 = -0.51 \ 3$
		6083	3.4	145.821	7/2-	D+Q	+0.10 4	$A_2 = -0.304$
		6142	2.8	87.525	5/2-	D+Q	-0.15 5	A ₂ =0.27 6
		6229	1.6	0.	3/2-	D+Q	$-0.07\ 2$	$A_2 = -0.53 4$
6240.11	$3/2^{(-)}$	1241	0.3	4998.7	5/2,(7/2)	D+Q		$A_2=0.11\ 10$
								$\Sigma I \gamma = 2.7\%$ to other bound states.
		1501	0.4	4710.0	2/2 (1/2 5/2=)	D.O		δ : -0.21 12 or -2.3 6 if J _f =5/2.
		1521	0.4	4/19.2	3/2,(1/2,5/2)	D+Q		$A_2=0.30$ 8
		1671	0.0	1560 60	5/2			$0: -0.05 \ 0 \ 0f + 5 \ I \ 11 \ J_{f} = 5/2.$
		10/1	0.8	4308.08	5/2	D+Q		$A_2 = -0.14 J$ $\delta = \pm 0.03 5 \text{ or } = 6.2$
		1725	03	4514 5	$3/2(1/25/2^{-})$	$D \pm O$		$\Delta_{2} = 0.44.11$
		1725	0.5	101110	5/2,(1/2,5/2)	DIQ		$\delta_{12}^{-2} = 0.037 \text{ or } +3.510 \text{ if } \text{ J}_{\text{e}} = 3/2$
		1847	0.4	4392.80	$3/2.(1/2^{-})$	D+O		$A_2 = 0.43 \ IO$
								δ : +0.04 7 or +3.3 7 if J _f =3/2.
		1895	1.1	4345.19	$(1/2^+)$	D(+Q)	+0.01 4	A ₂ =0.41 5
		2017	1.1	4222.48	5/2			-
		2139	3.6	4100.31	3/2-	D+Q	-0.14 5	A ₂ =0.05 5
		2141	1.0	4099.06	5/2-,(3/2-)	D+Q		A ₂ =0.29 2
								δ : -0.07 2 or +5.4 5.
		2649	2.4	3590.35	$5/2^{(-)}$	D+Q		$A_2 = -0.05 \ 3$
								δ : -0.04 3 or -3.8 4.
		2877	1.2	3362.65	$1/2^{(-)}$	D+Q		$A_2 = -0.58 \ 4$
								δ : -0.05 2 or -1.6 8.
		3185	2.8	3054.22	5/2-	D+Q		$A_2 = -0.05 \ 3$
		2224	0.5	2005 45	2/2-	D 0		δ : -0.04 3 or -1.9 4.
		3234	0.5	3005.45	3/2-	D+Q		$A_2 = 0.08 \ \delta$
		2.472	2.2	07(7.00	(1/2)=	D		0: -0.21 S or $+20$ 10.
		3472	3.2	2767.32	(1/2)	D+Q		$A_2 = -0.40 \angle$
								0: +0.00 I of -2.0 I.

18

 $^{47}_{23}\mathrm{V}_{24}\text{--}18$

					⁴⁶ Ti(p, γ	i11,1986De13 (continued)			
							$\gamma(^{47}V)$ (cor	ntinued)	
E _i (level)	J_i^π	E_{γ}^{\dagger}	I _γ ‡	E_{f}	J_f^π	Mult. [#]	$\delta^{\#}$		Comments
6240.11	3/2 ⁽⁻⁾	3800	1.3	2439.54	5/2+	D+Q		$A_2=0.08\ 6$ δ : -0.16 6 or -2.6 4.	
		4028	4.9	2211.75	1/2-	D+Q	-0.14 2	A ₂ =-0.71 2	
		4064	29	2175.86	5/2-	D+Q		$A_2 = -0.11 I$	
		4157	0.5	2082.72	3/2-	D+Q		$A_2 = 0.79 \ 9$ $A_3 = 0.79 \ 9$	
		4579	0.7	1660.62	$1/2^{+}$	D+O	-0.05 3	$A_2 = -0.585$	
		5579	1.2	660.358	5/2+	D(+Q)	-0.04 6	$A_2 = -0.05 6$	
		5980	1.2	259.486	3/2+	D(+Q)	+0.00 6	A ₂ =0.41 9	
		6152	35	87.525	5/2-	D+Q		$A_2 = -0.08 \ 2$ δ : -0.02 2 or -4.3 3.	
		6239	4.9	0.	3/2-	D+Q		$A_2 = -0.18 \ 3$ δ : -0.39 3 or -8 2.	
6271.09	$(3/2^{-})$	1874	2.1	4392.80	$3/2,(1/2^{-})$			$\Sigma I\gamma = 4.9\%$ to other bound states.	
		2048	1.8	4222.48	5/2				
		2170	6.0	4100.31	3/2-				
		2378	1.4	3892.26	$3/2,(5/2^+)$				
		2680	1.5	3590.35	$5/2^{(-)}$				
		2754	1.2	3517.08	$5/2^{(-)}$				
		2900.13	4.1	3370.56	3/2				
		2908	1.9	3362.65	$1/2^{(-)}$				
		3221	1.9	3054.22	5/2-				
		3503	1.0	2767.32	(1/2)				
		3048 6011	9.3	2722.03	$\frac{5}{2}$				
		6183	4.5	239.480	5/2 5/2-				
		6270	12	0	$3/2^{-}$				
6296.77	3/2-	1154	0.3	5142.16	3/2,(1/2 ⁻ ,5/2 ⁻)	D(+Q)	+0.02 15	$A_2 = 0.41 \ 17$	
		1444	0.5	4852.5	5/2,(1/2 ⁻ ,3/2 ⁻)	D+Q		$2r\gamma = 4\%$ to other bound states. $A_2 = -0.07$ 7 Si = 0.02 7 or = 4.2 12 if L = 5/2	
		1500	0.6	4796.8	3/2,(1/2 ⁻ ,5/2 ⁻)	D+Q		$A_2 = -0.37 \ 8$ $A_2 = -0.37 \ 8$ $A_3 = -0.37 \ 8$	
		1786	1.8	4510.01	5/2,(3/2 ⁻)	D+Q		$A_2 = -0.085$ $A_2 = -0.085$ $A_3 = -0.015$ or $-4.3.9$ if $L_2 = -5/2$	
		2024.6	0.9	4271.75	(1/2)	D+Q		A ₂ =-0.39 4 δ : +0.04 3 or -1.9 <i>l</i> if L=1/2	
		2099	1.1	4197.3	5/2 ⁽⁻⁾	D+Q		$A_2 = 0.00 4$ $\delta_1 = -0.09 5 \text{ or } -3.2 5$	
		2178	2.8	4118.12	3/2,(1/2,5/2)				

From ENSDF

 ${}^{47}_{23}\mathrm{V}_{24}$ -19

 ${}^{47}_{23}\mathrm{V}_{24}$ -19

	⁴⁶ Ti(p,γ) 1993Ca12,1991Ki11,1986De13 (continued)												
							$\gamma(^{47}V)$ (c	ontinued)					
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	J_f^π	Mult. [#]	$\delta^{\#}$		Comments				
6296.77	3/2-	2197	4.2	4100.31	3/2-	D+Q		$A_2 = -0.01 \ 2$ $\delta = -0.08 \ 2 \ \text{or} = 3.4 \ 3 \ \text{if } L = 5/2$					
		2523	0.8	3773.4	(1/2)	D+Q ^a		$A_2 = -0.44 6$ $A_2 = -0.44 6$ $A_3 = -0.44 6$					
		2706	1.9	3590.35	5/2 ⁽⁻⁾			0. ± 0.02 4 or ± 1.8 2 II J _f =1/2.					
		2925.79	9.4	3370.56	3/2	D+Q		$A_2 = 0.24 \ 2 \\ \delta: -0.09 \ 2 \text{ or } +6.2 \ 6.$					
		2934	2.4	3362.65	$1/2^{(-)}$								
		3857 4120	1.8	2439.54	$5/2^+$ $5/2^-$	D(+Q)	-0.01 4	$A_2 = -0.08 \ 4$					
		4213	5.1	2082.72	3/2-	M1+E2		A ₂ =0.80 3					
		1227	1.2	1068 02	2/2+		0.09.4	δ : +0.33 4 or +1.5 1.					
		4635	5.4	1660.62	$\frac{3}{2}$ 1/2 ⁺	D+Q D(+Q)	-0.084 -0.001	$A_2 = 0.200$ $A_2 = -0.492$					
		6208	2.5	87.525	5/2-	D+Q		$A_2 = -0.774$					
		6296	52	0.	3/2-	M1+E2		$a_{2}=0.78\ 2$ $b_{1}=0.78\ 2$ $b_{2}=0.78\ 2$					
6351.15	(3/2)	1209	0.1	5142.16	3/2,(1/2 ⁻ ,5/2 ⁻)			0. +0.51 2 01 +1.0 1.					
		1335	0.2	5016.0	$3/2,(5/2^+)$								
		1352	0.1	4998.7	5/2,(7/2)								
		1/82	1.0	4508.08	$\frac{3}{2}$ $\frac{3}{2} (\frac{1}{2} \frac{5}{2})^{-}$								
		1850	0.1	4510.01	5/2,(1/2,5/2)								
		2079	0.6	4271.75	(1/2)								
		2128	0.9	4222.48	5/2								
		2153	0.2	4197.3	$5/2^{(-)}$								
		2200	0.1	4150.35	$5/2^{(-)}$								
		2233	0.5	4118.12	3/2,(1/2,5/2)								
		2250	1.7	4100.31	3/2-								
		2270	1.0	4080.60	3/2+								
		2392	0.4	3958.1 2975 75	$\frac{3}{2}$								
		2473.5	0.5	3877 6	$\frac{3}{2}, \frac{3}{2}$								
		2760	11	3590 35	5/2(-)								
		2834	0.6	3517.08	5/2 $5/2^{(-)}$								
		2980	1.4	3370.56	3/2								
		2980	1.2	3370.52	1/2,3/2,5/2+								
		3296	0.5	3054.22	5/2-								
		3345	0.1	3005.45	3/2-								
		3583	1.2	2767.32	$(1/2)^{-}$								

From ENSDF

 $^{47}_{23}\mathrm{V}_{24}\text{--}20$

Т

$\gamma(^{47}V)$ (continued)

Е	(level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	J_f^{π}	Comments
6	351.15	(3/2)	3628	2.9	2722.63	5/2-	
			3911	0.9	2439.54	5/2+	
			4139	7.1	2211.75	1/2-	
			4175	0.9	2175.86	5/2-	
			4268	11	2082.72	$3/2^{-}$	
			4383	2.3	1968.92	$\frac{3}{2}$	
			4090 5690	5.4 1.8	660 358	1/2 5/2+	
			6091	9.8	259.486	$3/2^+$	
			6204	0.6	145.821	7/2-	
			6263	17	87.525	5/2-	
			6350	28	0.	3/2-	
6	373.99	(1/2)	1831	3.5	4543.02	$3/2,(1/2,5/2^+)$	$\Sigma I\gamma = 0.4\%$ to other bound states.
			2166	2.2	4207.10	3/2,(1/2,5/2)	
			2273	1.0	4100.31	$\frac{3}{2}$	
			2295	9	4080.00 3958 7	3/2+	
			2483	2.5	3890.1	<5/2+	
			2600	4.3	3773.4	(1/2)	
			3003	1.0	3370.56	3/2	
			3003	1.8	3370.52	1/2,3/2,5/2+	
			3606	3.6	2767.32	$(1/2)^{-}$	
			4162	5.5	2211.75	$1/2^{-}$	
			4291	1.4	2082.72	3/2 3/2+	
			4404	32	1908.92	$\frac{3}{2}$ 1/2+	
			6114	11	259.486	$3/2^+$	
			6373	15	0.	3/2-	
6	387.44	$(5/2^+)$	1147	1.1	5240.0	$5/2^{(+)}, (3/2^+, 7/2^+)$	$\Sigma I\gamma = 7.9\%$ to other bound states.
			1877.49	1.5	4510.01	5/2,(3/2 ⁻)	
			1933	1.3	4453.7	1/2	
			2402	1.2 5.1	3984 97	$7/2 (3/2^+ 5/2^+)$	
			2518	5.0	3869.0	5/2	
			2666	1.0	3721.29	7/2	
			2727	1.9	3659.71	(7/2)	
			2862	26	3524.60	7/2+	
			3031	2.8	3355.49	5/2+	
			3333	2.7	3054.22	5/2-	
			3403	1.4	2984.29	7/2+ 7/2+	
			3947	3.0	2439.54	5/2+	
				2.0		-,-	
1							

					⁴⁶ Ti(p, γ)	1993C	a <mark>12,1991K</mark> i	11,1986De13 (continued)					
	γ ⁽⁴⁷ V) (continued)												
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	J_f^π	Mult. [#]	$\delta^{\#}$	Comments					
6387.44	(5/2+)	4418 5248 5726 6299 6387	7.5 1.6 21 3.1 1.7	1968.92 1138.55 660.358 87.525 0.	3/2 ⁺ 7/2 ⁺ 5/2 ⁺ 5/2 ⁻ 3/2 ⁻								
6394.12	5/2+	1154	1.2	5240.0	5/2 ⁽⁺⁾ ,(3/2 ⁺ ,7/2 ⁺)	D(+Q)	+0.02 3	$A_2=0.46$ 3 $\Sigma I\gamma=4\%$ to other bound states.					
		1270	0.8	5123.86	7/2,(5/2 ⁺)	D+Q		A ₂ =-0.13 3 δ : -0.01 2 or -8 <i>I</i> if J _f =7/2.					
		1486 1584	0.7 0.4	4907.6 4807.30	5/2,(3/2 ⁺ ,7/2 ⁺) 5/2	D+Q D+Q	-0.06 4	A ₂ =0.38 4 A ₂ =0.48 7 δ : +0.04 7 or +1.2 2 if J _f =5/2.					
		1884.1	0.7	4510.01	5/2,(3/2 ⁻)	D+Q		A ₂ =-0.17 5 δ : +0.02 4 or -12 3 if J _f =7/2.					
		1940	1.2	4453.7	7/2	D+Q		$A_2 = -0.16 \ 3$ δ : +0.01 4 or <-7.					
		2244 2314	0.1 1.1	4150.35 4080.60	$5/2^{(-)}$ $3/2^+$	D+Q	-0.16 2	$A_2 = -0.68 \ \beta$					
		2409 2441	3.1 1.0	3984.97 3952.6	$7/2,(3/2^+,5/2^+)$ $7/2,(5/2^-)$	D(+Q)	+0.02 3	$A_2 = -0.35 6$					
		2672	6.1	3721.29	7/2	D+Q		$A_2 = -0.25 \ 2$ δ : +0.08 2 or <-15.					
		2699	1	3694.4	$5/2^{(+)},(3/2^+)$								
		2734	3.4	3659.71	(7/2)	D+O	+0.02 1	$A_2 = -0.17 2$					
		2869	25	3524.60	7/2+	D+Q	+0.02 1	$A_2 = -0.17 I$					
		3038	8.4	3355.49	5/2+	D(+Q)	+0.02 2	A ₂ =0.47 2					
		3146	0.7	3247.73	7/2-	D+Q	-0.09 6	$A_2 = -0.01 8$					
		3583	10	2810.04	7/2+	D+Q	-0.04 1	$A_2 = -0.08 \ l$					
		3671	0.7	2722.63	5/2-	D(+Q)	-0.09 10	A ₂ =0.35 11					
		3954	4.4	2439.54	5/2+	D+Q	+0.04 3	$A_2 = 0.48 \ 2$					
		4311	3.7	2082.72	$3/2^{-}$	D+Q	+0.04 1	$A_2 = -0.32 2$					
		4424	6.5	1968.92	3/2+	D+Q	-0.01 1	$A_2 = -0.40 I$					
		5733	12	660.358	5/2+								
		6134	2.5	259.486	$3/2^{+}$	D+Q	+0.13 1	$A_2 = -0.13 \ 3$					
		6247	0.7	145.821	7/2-	D+Q	-0.16 4	A ₂ =0.08 5					
		6306	0.5	87.525	5/2-	D+Q	+0.26 12	A ₂ =0.67 7					
6426.04	3/2 ⁽⁻⁾	2275	2.4	4150.35	5/2 ⁽⁻⁾	D+Q		A ₂ =-0.17 4 ΣIγ=3.2% to other bound states. δ: +0.06 3 or -7 <i>l</i> if J _f =5/2.					
		2307	1.6	4118.12	3/2,(1/2,5/2)	D+Q		$A_2=0.305$ δ : -0.06 4 or +5 1 if $J_f=3/2$.					

From ENSDF

 $^{47}_{23}\mathrm{V}_{24}\text{--}22$

	46 Ti(p, γ) 1993Ca12,1991Ki11,1986De13 (continued)											
							$\gamma(^{47}V)$ (co	ontinued)				
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	J_f^π	Mult. [#]	δ#	Comments				
6426.04	$3/2^{(-)}$	2325	2.3	4100.31	3/2-							
		2550.2	2.1	3875.75	5/2,(3/2 ⁻)	D+Q		$A_2 = -0.115$ $\delta_1 \pm 0.015$ or -5.1 if $L = 5/2$				
		2835	2.3	3590.35	$5/2^{(-)}$	D+Q		$A_2 = -0.095$				
		2055	1.0	2270 56	2/0			δ : -0.01 4 or -4.5 9.				
		3055	1.8	33/0.56	3/2 3/2							
		3659	1.1	2767.32	$(1/2)^{-}$							
		4214	37	2211.75	1/2-	D+Q		$A_2 = -0.58 I$				
		4250	30	2175.86	5/2-	D+Q	-0.06 1	$A_2 = -0.03 I$				
		4457	3.9	1968.92	3/2+	D+Q		$A_2 = 0.37 4$				
		4765	1.9	1660.62	$1/2^{+}$	D+O		$a_{2} = -0.585$				
					, 			$\delta : -0.06 \ 4 \ \text{or} \ -1.5 \ l.$				
		5765 6166	1.0	660.358 259.486	$5/2^+$ $3/2^+$	D±O		$A_{0} = 0.14.13$				
		0100	0.7	237.400	5/2	DIQ		δ : -0.16 9 or >+6.				
		6279	0.3	145.821	7/2-	Q+O		$A_2 = -0.3220$				
		6338	3.6	87.525	5/2-	D+Q		$A_2 = 0.45$ or < -2.1 . $A_2 = 0.065$				
		<		2			0.4	δ : -0.15 5 or -2.7 4.				
6427.56	5/2	6425 2346	3.1	0. 4080.60	$\frac{3}{2}$ $\frac{3}{2^+}$	D(+Q)	<+0.1	$A_2=0.92$ / $\Sigma I_{\gamma}=9.3\%$ to other bound states.				
0127.50	5/2	2706	1.0	3721.29	7/2							
		2902	2.1	3524.60	$7/2^+$							
		3987 4458	0.7 21	2439.54	$\frac{5}{2^{+}}$							
		5288	4.5	1138.55	7/2+							
		5766	26	660.358	$5/2^+$							
		6339	25 25	259.480	$5/2^{-1}$							
6475.47	$5/2^{(+)}$	1252	0.5	5222.71	3/2,(5/2 ⁺)			$A_2 = -0.235$				
								Mult., δ : D+Q with δ =0.08 3 for J _f =3/2.				
		2394	2.5	4080.60	3/2+	D(+Q)	+0.00 1	$A_2 = -0.38 2$				
		2490	0.6	3984.97	$7/2,(3/2^+,5/2^+)$. 2						
		2516 2522	1.1 2.4	3958.7 3952.6	$3/2^+$ $7/2(5/2^-)$							
		2781	1.1	3694.4	$5/2^{(+)},(3/2^+)$	D+Q		A ₂ =0.51 15				
		2017	0.6	2650 71	(7/0)			δ : +0.07 6 or +1.0 2 if J _f =5/2.				
		2815	2.6	3659.71	(7/2)							

L

 $^{47}_{23}\mathrm{V}_{24}\text{--}23$

					⁴⁶ Ti(p, γ)	1993Ca1	2,1991Ki11,	1986De13 (continued)					
	$\gamma(^{47}V)$ (continued)												
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	J_f^π	Mult. [#]	δ #	Comments					
6475.47	5/2 ⁽⁺⁾	3171 3227	19 0.5	3303.53 3247.73	3/2 7/2 ⁻	D+Q D+Q	-0.10 1	$A_2 = -0.57 \ I$ $A_2 = -0.27 \ I3$ $\delta_1 + 0.09 \ 9 \ or < -15$					
		3665 4035 4392 4506 5336 5814 6215 6329 6475	$\begin{array}{c} 3.3 \\ 1.6 \\ 4.2 \\ 20 \\ 2.0 \\ 19 \\ 7.0 \\ 0.4 \\ 7.0 \end{array}$	$\begin{array}{c} 2810.04\\ 2439.54\\ 2082.72\\ 1968.92\\ 1138.55\\ 660.358\\ 259.486\\ 145.821\\ 0. \end{array}$	7/2 ⁺ 5/2 ⁺ 3/2 ⁻ 3/2 ⁺ 7/2 ⁺ 5/2 ⁺ 3/2 ⁺ 7/2 ⁻ 3/2 ⁻	D(+Q) D+Q M1+E2 D+Q D+Q D+Q D(+Q) D+O	$\begin{array}{c} +0.04 \ 6 \\ +0.03 \ 1 \\ +0.02 \ 1 \\ -1.00 \ 19 \\ -0.10 \ 2 \\ -0.47 \ 2 \\ -0.07 \ 10 \\ +0.07 \end{array}$	$A_{2}=0.495$ $A_{2}=-0.332$ $A_{2}=-0.351$ $A_{2}=0.493; A_{4}=0.103$ $A_{2}=0.322$ $A_{2}=-1.042; A_{4}=0.122$ $A_{2}=-0.0413$ $A_{2}=-0.251$					
6679.38	7/2 ⁽⁻⁾	1681	0.3	4998.7	5/2,(7/2)	DIQ	10.07	A ₂ =-0.30 9 $\Sigma I\gamma$ =0.9% to other bound states. Mult., δ : D+(Q) with δ =+0.02 4 is calculated for J=5/2.					
		1946	0.8	4733.8	9/2 ⁽⁻⁾	D+Q		$A_2 = -0.11 5$ $\delta: -0.04 4 \text{ or } -11 4.$					
		2111 2277	0.4 0.4	4568.68 4402.6	5/2 7/2,(5/2,9/2)	D+Q D+Q	+0.19 6	$A_2=0.03 \ 11$ $A_2=0.37 \ 12$ δ : -0.12 14 or +1.0 3 for J _F =7/2.					
		2457	1.4	4222.48	5/2	D+Q	+0.052	$A_2 = -0.24 4$					
		2003	1.5	3721.20	7/2 7/2	D(+Q) D(+Q)	+0.03.0	$A_2 = 0.464$					
		2958 2961	0.4	3718.0	$7/2,(5/2,9/2^+)$	D(+Q) D+Q	+0.5 5	$A_2 = 0.04 \ 15$ $A_2 = 0.40 \ 7$ $\delta: -0.08 \ 9 \ or +0.9 \ 2.$					
		3089	0.5	3590.35	5/2 ⁽⁻⁾	D+Q		$\begin{array}{l} A_2 = -0.40 \ 10 \\ \delta: \ -0.03 \ 6 \ \text{or} \ -3.1 \ 7. \end{array}$					
		3162	2.3	3517.08	$5/2^{(-)}$	D+Q	-0.06 2	$A_2 = -0.46 \ 3$					
		3432	3.7	3247.73	7/2-	D(+Q)	$-0.02\ 2$	A ₂ =0.45 2					
		3625	3.4	3054.22	5/2-	D+Q	+0.03 1	$A_2 = -0.28 \ 2$					
		3695	22	2984.29	7/2-	D(+Q)	+0.02 2	$A_2 = 0.48 I$					
		3932	6.6	2747.12	9/2-	D+Q	+0.02 1	$A_2 = -0.19 I$					
		3957	9.2	2722.63	5/2-	D(+Q)	-0.00 1	$A_2 = -0.36 I$					
		4240	4.2	2439.54	5/2*	D(+Q)	-0.01 1	$A_2 = -0.38 2$					
		4503	0.4	21/5.86	5/2 0/2 ⁺	D(+Q)	-0.06 6	$A_2 = -0.40 II$					
		4932	1.4	1/40.90	$9/2^{-1}$	D(+Q)	-0.003	$A_2 = -0.15 \ S$					
		5407 6532	19	12/1.80	ン/ビ フ/D ^ー	D+Q	-0.04 I 0.21 2	$A_2 = -0.09 I$ $A_2 = -0.07 2$					
		6591	10	87 525	1/2 5/2 ⁻	D+Q D+0	-0.212 -0.031	$A_2 = 0.27 2$ $A_2 = 0.41 1$					
6682.84	3/2 ⁽⁻⁾	1440 ^{be}	0.7 ^b	5240.0	$5/2^{(+)}, (3/2^+, 7/2^+)$	D+Q ^b	b	$\Sigma I\gamma = 4.2\%$ to other bound states. δ : -0.07 2 or -2.9 3.					

From ENSDF

 $^{47}_{23}\mathrm{V}_{24}\text{--}24$

					46 Ti(p, γ)	1993C	Ca12,1991Ki11	,1986De13 (continued)	⁴⁷ ₂₃ V				
γ ⁽⁴⁷ V) (continued)													
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [#]	Comments						
6682.84	$3/2^{(-)}$	1541 ^b	0.4 ^b	5142.16	$3/2,(1/2^-,5/2^-)$	D+Q ^b		δ : -0.00 3 or -3.7 7.					
		2114 <mark>b</mark>	2.1 ^b	4568.68	5/2								
		2173 ^{dbe}	4.2 ^{<i>db</i>}	4510.01	5/2,(3/2 ⁻)								
		2173 ^{dbe}	4.2 ^{<i>db</i>}	4509.52	7/2,(3/2,5/2 ⁺)								
		2411 ^{dbe}	2.8 ^{<i>db</i>}	4271.75	(1/2)	D+Q <mark>b</mark>							
		2411 ^{dbe}	2.8 ^{<i>db</i>}	4271.60	7/2,(3/2+,5/2+)	D+Q <mark>b</mark>							
		2460 <mark>b</mark>	12.3 <mark>b</mark>	4222.48	5/2	D+Q <mark>b</mark>		δ : +0.00 <i>l</i> or +4.5 <i>3</i> .					
		2791 <mark>b</mark>	1.4 ^b	3892.26	3/2,(5/2 ⁺)								
		3092 <mark>b</mark>	6.0 ^b	3590.35	$5/2^{(-)}$	D+Q <mark>b</mark>		δ : -0.02 <i>1</i> or +5.4 <i>3</i> .					
		3166 ^b	6.9 ^b	3517.08	$5/2^{(-)}$	D+Q ^b		δ : +0.01 3 or +4.7 9.					
		3312 ^{dbe}	6.6 ^{<i>db</i>}	3370.56	3/2	D+Q ^b							
		3312 ^{dbe}	6.6 ^{<i>db</i>}	3370.52	1/2,3/2,5/2+	D+Q <mark>b</mark>							
		3320 ^b	6.4 ^b	3362.65	$1/2^{(-)}$	D+Q <mark>b</mark>		δ : +0.07 <i>l</i> or +1.5 <i>l</i> .	т				
		3629 <mark>6</mark>	1.1 ^b	3054.22	5/2-				ron				
		3677 <mark>6</mark>	12.0 ^b	3005.45	3/2-	D+Q <mark>b</mark>		δ : -0.01 2 or -4.0 3.	D 巴				
		3916 <mark>6</mark>	1.1 ^b	2767.32	$(1/2)^{-}$				ISN				
		3960 <mark>6</mark>	4.5 ^b	2722.63	5/2-	D+Q <mark>b</mark>		δ : +0.04 2 or +3.7 2.	OF				
		4507 ⁰	4.2 ^b	2175.86	5/2-								
		4600 ⁰	0.9 ⁰	2082.72	3/2-	D+Q ^b		δ : -0.11 6 or -2.5 6.					
		4714 ⁰	0.5 ^b	1968.92	3/2+	D+Q ^b		δ : +0.02 3 or -4.2 5.					
		5022 ^b	1.2 ^b	1660.62	1/2+	D+Q ^b		δ : -0.02 3 or +1.8 1.					
		6022 ^b	3.9 ^b	660.358	5/2+	D+Q ^b		δ : +0.00 <i>1</i> or +4.6 <i>4</i> .					
		6595 ⁰	2.8 ⁰	87.525	5/2-	D+Q ^b		δ : +0.11 3 or +2.9 4.					
		6683 ⁰	14.1 ⁰	0.	3/2-	D+Q <mark></mark>		δ : +0.13 <i>l</i> or -7.9 8.					
6692.86	$1/2^{+}$	2486	1.4	4207.10	3/2,(1/2,5/2)			$\Sigma l\gamma = 4.6\%$ to other bound states.					
		2754	1.0	3938.7	$\frac{5}{2}$								
		3322	1.5	3370.56	3/2								
		4610	3.1	2082.72	3/2-								
		5032	37	1660.62	$1/2^+$								
6600	$(2/2^{-1})$	0433	49	239.486	$3/2^{+}$ 5/2(+) (2/2+ 7/2+)			$\Sigma I_{\rm ev} = 2.00\%$ to other bound states					
0099	(3/2)	1400°	1.0°	5240.0	5/2 ¹¹ ,(5/2 ¹ ,//2 ¹)	$\mathbf{D} \cdot \mathbf{O}^{\mathbf{b}}$		$21\gamma = 3.9\%$ to other bound states.					
		2131-	1.0-	4308.08	5/2	D+Q°		00.00 2 01 +4.3 4.					
									⁴⁷ 23 ^V 24				

 $^{47}_{23}\mathrm{V}_{24}\text{--}25$

					⁴⁶ Ti (p ,γ)	1993Ca12	2,1991Ki11	,1986De13 (continued)	
						$\gamma(4)$	⁷ V) (contin	ued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	J_f^π	Mult. [#]	δ#		Comments
6699	$(3/2^{-})$	2428 ^{dbe}	1.2 ^{<i>db</i>}	4271.75	(1/2)				
		2428 dbe	1.2 ^{<i>db</i>}	4271.60	$7/2,(3/2^+,5/2^+)$				
		2477 <mark>b</mark>	7.7 <mark>b</mark>	4222.48	5/2	D+O <mark>b</mark>	b	δ : -0.01 2 or +4.8 2.	
		3109 <mark>b</mark>	4.1 ^b	3590.35	$5/2^{(-)}$	D+O ^b	b	δ : -0.06 2 or +6.6 8.	
		3182 ^b	5.3 ^b	3517.08	$5/2^{(-)}$	D+0 ^b	b	δ : -0.03 <i>l</i> or +5.2 <i>3</i> .	
		3329 <i>dbe</i>	5.5 <i>db</i>	3370.56	3/2	$D+O^{b}$	bc		
		3329 <i>dbe</i>	5.5 ^{db}	3370.52	$1/2.3/2.5/2^+$	$D+Q^{b}$	С		
		3645 ^b	4.2 ^b	3054.22	5/2-	$D+O^{b}$	b	δ : +0.03 3 or +4.1 4	
		3694 ^b	2.3^{b}	3005 45	3/2-	2.4			
		3932b	2.5 2.2^{b}	2767 32	$(1/2)^{-}$	$D+O^{b}$	b	δ : +0.01.2 or +1.7.1	
		4523b	2.2 2.1 ^b	2175.86	5/2-	DIQ		0. 10.01 2 01 11.7 1.	
		4617^{b}	13.0^{b}	2175.00	3/2-	$D + O^{b}$	b	δ : +0.04.2 or -4.7.6	
		6030 ^b	15.0 1.7^{b}	660 358	5/2 5/2 ⁺	DIQ		0. 10.04 2 01 4.7 0.	
		6612b	1.7 13.8 ^b	87 525	5/2-	D±∩ <mark>b</mark>	b	$\delta = -0.06 I \text{ or } \pm 6.5 3$	
6953.4	$9/2^{+}$	3001	13	3952.6	$\frac{5}{2}$ $\frac{7}{2}(\frac{5}{2})$	D+Q		00.00101+0.55	
	~/-	5206	61	1746.96	9/2+	M1+E2	-0.18 3		
		5658	9	1294.96	11/2-	D(+Q)	+0.007		
		5681	5	1271.80	9/2-	D+Q		δ : -0.2 2 or -0.8 4.	
		6807	12	145.821	7/2-	D(+Q)	+0.03 4		

[†] Nominal energy obtained by evaluator from decay scheme of 1986De13.

 $\frac{1}{2}$ % photon branching ratio from each state or resonance. Upper limits correspond to two standard deviations for unobserved transitions. Uncertainties for the primary γ branching ratio range from a few percent for strong transitions to 50% for the weak ones.

[#] From $\gamma(\theta)$ and comparison to RUL. Other δ 's considered unlikely by evaluator from comparison to RUL and adopted J^{π} have been omitted.

[@] If $J_i = 5/2$.

26

[&] If $J_i = 3/2$.

^{*a*} If $J_f = 1/2$.

^b From 1973Sc29 (Ge(Li) (55°); NaI (0°, $\pm 35^{\circ}$, $\pm 55^{\circ}$, $\pm 90^{\circ}$)); I γ renormalized to % photon branchings by evaluator.

^c $\delta(2411) = +0.144$ or +13+14-5, $\delta(3317) = +0.074$ or -5.410, $\delta(3329) = -0.041$ or -3.32,

^d Multiply placed with undivided intensity.

^e Placement of transition in the level scheme is uncertain.

From ENSDF

 ${}^{47}_{23}V_{24}$ -26

 ${}^{47}_{23}V_{24}$

 $^{47}_{23}V_{24}$

Level Scheme (continued)

Intensities: % photon branching from each level & Multiply placed: undivided intensity given

 ${}^{47}_{23}V_{24}$

Level Scheme (continued)

Intensities: % photon branching from each level & Multiply placed: undivided intensity given

Level Scheme (continued)

Intensities: % photon branching from each level & Multiply placed: undivided intensity given

 ${}^{47}_{23}\mathrm{V}_{24}$

Level Scheme (continued)

Intensities: % photon branching from each level & Multiply placed: undivided intensity given

 ${}^{47}_{23}V_{24}$

Level Scheme (continued)

Intensities: % photon branching from each level & Multiply placed: undivided intensity given

 ${}^{47}_{23}\mathrm{V}_{24}$

Level Scheme (continued)

Intensities: % photon branching from each level & Multiply placed: undivided intensity given

Level Scheme (continued)

Intensities: % photon branching from each level & Multiply placed: undivided intensity given

 ${}^{47}_{23}V_{24}$

Level Scheme (continued)

Intensities: % photon branching from each level & Multiply placed: undivided intensity given

Level Scheme (continued)

Intensities: % photon branching from each level & Multiply placed: undivided intensity given

 ${}^{47}_{23}V_{24}$

46Ti(p,γ) 1993Ca12,1991Ki11,1986De13

& Multiply placed: undivided intensity given

Level Scheme (continued) Intensities: % photon branching from each level Legend

 $--- \rightarrow \gamma$ Decay (Uncertain)

3/2.(5/2 ⁺)	52 5135 D40 5036 713 04	55 55 10 10 10	19 VI	\$10	200																				5222 71	
3/2,(1/2 ⁻ ,5/2 ⁻)			485	0.00 × 00	ي موجع ا	\$																			5142.16	<11 fs
7/2,(5/2+)			11		3005	54	523	S.S.	3																5123.86	(1115
1/2,3/2,5/2+						50% 50%	66 64 64 64 64 64 7 7	0,1		, 0 i	P.														5108.65	
3/2,(5/2+)								5016 497	\$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4355	ζ'_{3}	\$ Ŷ	23	<i>{</i> 3											5016.0	<15 fs
5/2,(7/2)										40%	ર્જે હુંગે.	\$\$ \$} \$}	2.53 2.53	\sim											4998.7	
				 _ -				1					68			2%	20	6)						4976.5	
1/2,3/2,5/2+		 							 		_		1	28 28	\$ \$ \$ \$ \$ \$ \$ \$ \$	\$\$.\$?	6	9°2	ÿ.						4955.12	
5/2,(3/2+,7/2+)				 							_		' 	i 			\$\$.	~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	69	6.0	. 10		_%_		4907.6	<13 fs
5/2,(1/2 ⁻ ,3/2 ⁻)		 				!							-				I	- 38	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	28.5 28.5	ېر 	20	25	8	4852.5	
5/2								_					, , ,	, 	 					;	\$°\$	(7, 6,	2 4 2 4 7 4		4807.30	15 fs 9
<u>9/2</u> +																									1746.96	624 fs +90-24
_7/2+														-			 	 			 		 		1138.55	>208 fs
5/2+																									660.259	
<u></u>		▼ 		_			- -▼ 			▼ 			▼			.	. ▼ 						· ▼ 		000.338	
3/2+		*		*			<u>¦ ♥</u>		_i_¥		_	+		-	 	<u>+ </u>	v			•			•		259.486	
7/2-	I I		_ <u> </u>				¥		T		_	•		-	•				¥			•			145.821	
5/2-	₩		∣ ▼					_ +		 [¥			4	 				ł		_	,			87.525	
3/2-	L L		,			Ļ				 				i V				Ĭ			¥				0.	

 $^{47}_{23}V_{24}$

Legend

Level Scheme (continued)

Intensities: % photon branching from each level & Multiply placed: undivided intensity given

 $--- \rightarrow \gamma$ Decay (Uncertain)

 ${}^{47}_{23}V_{24}$

40

${}^{46}\mathrm{Ti}(\mathbf{p},\!\gamma)$ 1993Ca12,1991Ki11,1986De13

Legend

Level Scheme (continued) Intensities: % photon branching from each level & Multiply placed: undivided intensity given

 $--- \rightarrow \gamma$ Decay (Uncertain)

${}^{46}\mathrm{Ti}(\mathbf{p,}\gamma)$ 1993Ca12,1991Ki11,1986De13 Legend Level Scheme (continued) Intensities: % photon branching from each level γ Decay (Uncertain) & Multiply placed: undivided intensity given ۲ Coincidence • 30 3233 15 050 1602 りつか (1/2)3773.4 <11 fs - 0.2 1/2,3/2,5/2 3762.7 1 3721.29 7/2 15 fs 6 7/2,(5/2,9/2+) 1 -6.3.3-3718.0 660 $5/2^{(+)},(3/2^+)$ 3694.4 6 fs 3 (7/2)1 1 1 3659.71 14 fs 4 $5/2^{(-)}$ i i -05.05--05.05-3590.35 6 fs 2 7/2+ 3524.60 9.7 fs 28 _____ 5/2(-) 1 1 1 -<u>6</u>-67-3517.08 <6.9 fs 3/2 3370.56 $<\!\!5~{\rm fs}$ $\left\{ - \right\}$ ł 1/2,3/2,5/2+ 3370.52 11.8 fs 21 1 1 $1/2^{(-)}$ 1 i. 3362.65 2.8 fs 14 5/2+ 3355.49 5 fs 2 1 1 _____ ______ 3/2 T. i 3303.53 32 fs 7 _|-Т Т 1 1 2082.72 14.6 fs 35 3/2-T T I I T T i i 3/2+ <u>1968.92</u> 0.44 ps 12 1 l 9/2-1271.80 0.25 ps 8 1 ł 7/2+ <u>1138.55</u> >208 fs I Т 5/2+ 660.358 1 Т 3/2+ 259.486 1 7/2-145.821 ¥ ∎ 87.525 5/2 • * 3/2-0.

 ${}^{47}_{23}V_{24}$

 $^{47}_{23}\mathrm{V}_{24}\text{-}43$

 $^{47}_{23}V_{24}$

 ${}^{47}_{23}V_{24}$