²⁸Si(²⁸Si,2αpγ) E=125 MeV 1998Ca26

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	T. W. Burrows	NDS 108, 923 (2007)	20-Feb-2007				

Measured Ey, Iy, $\gamma\gamma$, $\gamma(\theta)$, $\gamma\gamma(\theta)$ (DCO), and lifetimes using $8\pi \gamma$ spectrometer with 20 detectors.

⁴⁷V Levels

E(level) [†]	J ^{π‡@}	T _{1/2} #	E(level) [†]	J ^{π‡@}	T _{1/2} #
0 ^{<i>a</i>}	3/2-&		4133.4 ^a 15	19/2-	0.49 ps 7
87.6 <mark>b</mark> 6	5/2-&		5000.4 ^d 17	$17/2^{+}$	
145.7 ^a 7	7/2 ^{-&}		5500.4? ^{bi} 17	$(21/2^{-})$	0.05 ps 3
259.6 [°] 5	3/2+ &		5729.7 ^c 13	$(19/2^+)$	0.23 ps 4
660.6 ^d 9	5/2+ <mark>&</mark>		5903.4 ^a 17	$(23/2^{-})$	0.35 ps 5
1138.6 ^c 8	7/2+ <mark>&</mark>		6869.7 ^d 16	$21/2^+$	
1271.8 <mark>b</mark> 8	9/2-&		7400.4 ^b 18	$(25/2^{-})$	0.24 ps 3
1294.4 ^a 9	11/2 ^{-&}		7725.7 [°] 16	$(23/2^+)$	<0.07 ps
1747.6 <mark>d</mark> 9	9/2+ <mark>&</mark>		7884.4 ^a 19	$(27/2^{-})$	0.097 ps 21
2415.7 [°] 9	$11/2^{+e}$	1.0 ps 4	9608.8 ^C 19	$(27/2^+)$	0.08 ps 4
2558.2 ^b 10	13/2 ⁻		10005.5 ^{<i>a</i>} 24	$(31/2^{-})$	0.24 ps 3
2614.3 ^{<i>a</i>} 12	15/2- <mark>8</mark>	>1.7 ps	10769.5 ^b 24	$(29/2^{-})$	<0.10 ps
3271.6 d 9	$13/2^{+}$	>2 ps	11945 ^c 3	$(31/2^+)$	<0.12 ps
3954.6 ^c 11	15/2+ ^h	0.37 ps 6	14038 ^{<i>a</i>} 4	$(35/2^{-})$	<0.08 ps

[†] From least-squares fit to $E\gamma's$ (evaluator).

[‡] Assignments based on previous work, DCO's, and lifetime measurements. Detailed arguments added by evaluator.

[#] From Doppler shift attenuation method.

[@] Assignments from 1998Ca26 based on previous work, angular distributions, DCO, and life-time measurements. Parentheses added by evaluator.

& From the Adopted Levels.

^{*a*} Band(A): g.s. band, $\alpha = -1/2$. See band footnotes In the Adopted Levels for a comparison of band assignments In this and the other three (HI,xn γ) datasets.

^b Band(B): g.s. band, $\alpha = +1/2$. See band footnotes In the Adopted Levels for a comparison of band assignments In this and the other three (HI,xn γ) datasets.

^c Band(C): $3/2^+$ band, $\alpha = -1/2$. See band footnotes In the Adopted Levels for a comparison of band assignments In this and the other three (HI,xny) datasets.

^d Band(D): $3/2^+$ band, $\alpha = +1/2$. See band footnotes In the Adopted Levels for a comparison of band assignments In this and the other three (HI,xn γ) datasets.

^e J \rightarrow J-2 E2 γ to 7/2⁺.

^{*f*} M1 γ from 15/2⁻ and γ to 9/2⁻.

^g J \rightarrow J-2 E2 γ to 11/2⁻.

^{*h*} J \rightarrow J-2 E2 γ to 11/2⁺.

^{*i*} 1362 γ -1904 γ placed As 25/2⁻,7397 \rightarrow 21/2⁻,6035 \rightarrow 19/2⁻,4131 by 1998Be69 In ²⁴Mg(²⁸Si, α p γ) and 2001Br32 In ²⁸Si(²⁸Si, 2α p γ) E=115 MeV.

²⁸Si(²⁸Si,2αpγ) E=125 MeV 1998Ca26 (continued)

$\gamma(^{47}V)$

Angular distributions (AD) and directional correlations of oriented nuclei (DCO) measured At 37° and 79°. An AD of \approx 0.8 suggests J \rightarrow J-1 dipole and of \approx 1.5 suggests J \rightarrow J dipole or J \rightarrow J-2 quadrupole transition. The DCO ratio has values for stretched dipole and quadrupole γ_2 transitions of \approx 1 and \approx 1.5 for dipole γ_1 and \approx 0.5 and \approx 1 for quadrupole γ_1 ; same ambiguity for J \rightarrow J dipole and J \rightarrow J-2 quadrupole transitions As In AD.

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	Comments
56 1	1.9	2614.3	15/2-	2558.2	13/2-	M1	
58 1		145.7	7/2-	87.6	5/2-		
88 1		87.6	5/2-	0	$3/2^{-}$		
146 1		145.7	1/2	0	3/2		
172.2 6		259.6	3/2+	87.6	5/2-		
259.4 ^w 5		259.6	$3/2^+$	0	$3/2^{-}$		
401 1		660.6	5/21	259.6	3/2		
403 ^{<i>a</i>} 1	<3	5903.4	$(23/2^{-})$	5500.4?	$(21/2^{-})$		
4/8/1	82	1138.0 7884.4	$(27/2^{-})$	000.0 7400.4	$\frac{5}{2}$	M1	DCO-0.58.5
404 1	0.2	/004.4	(27/2)	7400.4	(25/2)	1011	Mult.: $J \rightarrow J-1$ D from AD and DCO. M1 from comparison
							to RUL.
609 1	•	1747.6	9/2+	1138.6	$7/2^+$	5 54	
668 1	2.0	2415.7	$11/2^+$ 15/2+	1747.6	9/2 ⁺	D,E2	
083 1	1.0	3934.0 5720.7	$\frac{15}{2^{+}}$	52/1.0 5000.4	$\frac{13}{2}$	D,E2	
764 1	<0.0	10769 5	(19/2) $(29/2^{-})$	10005 5	$(31/2^{-})$		
856 1	1.5	3271.6	$(2)/2^{+}$	2415.7	(31/2)	D.E2	
879 1	110	1138.6	$7/2^+$	259.6	$3/2^+$	2,22	
966 [@]		6869.7	$21/2^{+}$	5903.4	$(23/2^{-})$		
1087 <i>1</i>		1747.6	$9/2^{+}$	660.6	5/2+		
1126 <i>1</i>		1271.8	9/2-	145.7	7/2-		
1144 1	0.5	2415.7	$11/2^{+}$	1271.8	9/2-	D,E2	
1149 1		1294.4	$11/2^{-}$	145.7	7/2-		
1184 1		12/1.8	9/2	87.6	5/2		
1204 1	17	2558.2	15/2	1294.4	11/2	Tab	
12// 1	1/	2415.7	$\frac{11}{2}$	1138.0	$1/2^{-1}$	E2°	
1280 1	100	2558.2	15/2 $15/2^{-}$	12/1.0	$\frac{9}{2}$ 11/2 ⁻	Б2 <mark>С</mark>	DCO-1135
$1343^{@d}$	100	2614.3	$15/2^{-}$	1271.8	$9/2^{-}$	L2	De0-1.15 5
$1367 \frac{\&d}{1}$	2.0	5500.42	$(21/2^{-})$	4133.4	19/2-	DF2	
1497 1	18	7400.4	$(25/2^{-})$	5903.4	$(23/2^{-})$	D^{a}	
1519 <i>I</i>	80	4133.4	19/2-	2614.3	$15/2^{-}$	D,E2	
1524 <i>1</i>	8.1	3271.6	$13/2^{+}$	1747.6	9/2+	D,E2	
1539 <i>I</i>	11	3954.6	$15/2^{+}$	2415.7	$11/2^{+}$	E2 ^b	
1601 [@]		1747.6	9/2+	145.7	7/2-		
1729 <i>1</i>	4.5	5000.4	$17/2^{+}$	3271.6	$13/2^{+}$		
1770 <i>1</i>	59	5903.4	$(23/2^{-})$	4133.4	19/2-	(E2)	DCO=1.16 4
							Mult.: $J \rightarrow J$ or $J \rightarrow J^{-2}$ from AD and DCO. \neq M2 from comparison to RUL. $\neq J \rightarrow J$ from existence of cascade transition?
1775 <i>1</i>	5.9	5729.7	(19/2+)	3954.6	15/2+	(E2)	Mult.: J \rightarrow J or J \rightarrow J-2 from AD. \neq M2 from comparison to RUL, \neq J \rightarrow J from existence of cascade transition?
1869 <i>1</i>	1.2	6869.7	$21/2^+$	5000.4	17/2+	Q	Mult.: $J \rightarrow J$ or $J \rightarrow J-2$ from AD. $\neq J \rightarrow J$ from existence of cascade transition.
1883 <i>I</i>	2.2	9608.8	$(27/2^+)$	7725.7	$(23/2^+)$	E2	DCO=1.9 2

Continued on next page (footnotes at end of table)

²⁸Si(²⁸Si,2αpγ) E=125 MeV 1998Ca26 (continued)

$\gamma(^{47}V)$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult. [#]	Comments
							Mult.: $J \rightarrow J-2 Q$ from DCO ($J \rightarrow J-1$ gate). $\neq M2$ from comparison to RUL.
1900 <mark>&</mark> 1	2.1	7400.4	$(25/2^{-})$	5500.4?	$(21/2^{-})$	D,E2	
1977 <i>1</i>	0.5	3271.6	$13/2^{+}$	1294.4	$11/2^{-}$	D,E2	
1981 <i>1</i>	10	7884.4	$(27/2^{-})$	5903.4	$(23/2^{-})$	E2 ^C	DCO=1.0 1
1996 <i>1</i>	1.8	7725.7	$(23/2^+)$	5729.7	$(19/2^+)$	D,E2	
2121 2	10	10005.5	$(31/2^{-})$	7884.4	$(27/2^{-})$	E2	DCO=1.2 1
							Mult.: $J \rightarrow J-2$ Q from DCO. \neq M2 from comparison to RUL.
2336 2	1.7	11945	$(31/2^+)$	9608.8	$(27/2^+)$	D,E2	DCO=2.6 5
							Mult.: $J \rightarrow J$ or $J \rightarrow J-2$ from AD. \neq M2 from comparison to
							RUL.
2885 2	4.1	10769.5	$(29/2^{-})$	7884.4	$(27/2^{-})$	D ^a	
4032 2	3.9	14038	$(35/2^{-})$	10005.5	$(31/2^{-})$	E2	Mult.: $J \rightarrow J-2 Q$ from AD. $\neq M2$ from comparison to RUL.

[†] Uncertainty 1 keV for $E\gamma < 2$ MeV and 2 keV for $E\gamma > 2$ MeV.

[‡] Relative intensities. See Table III of 1998Ca26 for branching ratios.

[#] From comparison to RUL, except As noted (evaluator). Detailed arguments by evaluator based on interpretation of AD's and DCO's given Table III of 1998Ca26 and comparison to RUL.

[@] From the Adopted Gammas.

& Assigned order based on relative F(τ) values. 1362γ -1904γ placed As $25/2^-,7397 \rightarrow 21/2^-,6035 \rightarrow 19/2^-,4131$ by 1998Be69 In $^{24}Mg(^{28}Si,\alpha p\gamma)$ and 2001Br32 $^{28}Si(^{28}Si,2\alpha p\gamma)$ E=115 MeV.

^{*a*} J \rightarrow J-1 D from AD.

^{*b*} J \rightarrow J or J \rightarrow J-2 from AD. \neq J \rightarrow J from existence of cascade transition; \neq M2 from comparison to RUL.

^{*c*} J \rightarrow J or J \rightarrow J-2 from AD and DCO. \neq J \rightarrow J from existence of cascade transition; \neq M2 from comparison to RUL.

^d Placement of transition in the level scheme is uncertain.

 ${}^{47}_{23}V_{24}$

 $^{47}_{23}\rm{V}_{24}$

 ${}^{47}_{23}V_{24}$ -6

²⁸Si(²⁸Si,2αpγ) E=125 MeV 1998Ca26

 ${}^{47}_{23}V_{24}$