47 Ca β^- decay 1987Ju04,1969Wo02,1966Fr14

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	T. W. Burrows	NDS 108, 923 (2007)	20-Feb-2007				

Parent: ⁴⁷Ca: E=0.0; $J^{\pi}=7/2^{-}$; $T_{1/2}=4.536$ d 3; $Q(\beta^{-})=1992.0$ 12; % β^{-} decay=100.0 ⁴⁷Ca-Q(β^{-}): From 2003Au03.

1966Fr14 measured γ 's and $\beta\gamma$ -coincidences (Si(Li),Ge(Li)).

1969Wo02 measured γ 's, $\gamma\gamma$ -coin (NaI,Ge(Li)), and $\beta\gamma$ -coincidences (Si(Li),Ge(Li)). Others: see 1995Bu05.

⁴⁷Sc Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments		
0.0	7/2-	3.3492 [†] d 6	$\%\beta^{-}=100$		
766.83 9	$(3/2)^+$	270 ns 12	$T_{1/2}$: from 1966Ba40 ($\gamma\gamma$ (t)).		
807.89 8	$3/2^{-}$				
(1146.99)	$11/2^{-}$				
1297.12 8	$5/2^{-}$		T=5/2		
			J^{π} , T: $\beta\gamma$ -CP(1297 γ) (1967Be20,1965Ma06) indicates that the most likely spin value in the sequence 7/2(β ⁻)J(D,Q)7/2 is J=5/2.		
1878.2 5	9/2-		• • • • • •		

[†] From the Adopted Levels.

β^{-} radiations

1987Ju04 measured β 's and $\beta\gamma$ -coincidences; β spectrometer, pc, NaI. Coincidences: from 1969Wo02 and 1968Fi04. See 1987Mi18 for calculations of GT matrix elements.

E(decay)	E(level)	Ιβ ^{-†#}	Log ft	Comments		
(113.8 13)	1878.2	0.037 8	6.7 1	av Eβ=31.27 39		
695.0 [‡] 27	1297.12	73 15	6.08 9	av Eβ=242.66 49		
(1184.1 [@] <i>12</i>)	807.89			av E β =450.7 6		
				I β^- : From 1968Fi04 (s; $\beta\gamma$ coin, Si(Li), Ge(Li)). Other: <0.79 (90% C.L.) from intensity balancing.		
(1225.2 12)	766.83	0.087 3	$10.67^{1u} 2$	av E β =494.79 53		
				$I\beta^-$: From 1968Fi04 (s; $\beta\gamma$ coin, Si(Li), Ge(Li)).		
1990.6 [‡] 23	0.0	27 15	8.3 3	av E β =818.91 56 E(decay): assuming a 1+aW shape factor. Others: 1984.9 11 (assuming a statistical shape factor), 1987.4 27 (assuming a 1+aW+bW ² shape factor), and 1990.1 21 (assuming a 1+b/W shape factor) (1987Ju04), 1988.3 25 (1968Fi04. ms, Si(Li)), and 1980.6 26 (1967Hs03. ms, Si(Li)). See comment on ⁴⁷ Ca $Q(\beta^{-})$. Log <i>ft</i> : comparison with E β (to 1297)+E γ (1297 γ) indicates a nonstatistical shape factor (1987Ju04). log $f^{lu}t \ge 8.5$.		

[†] From intensity balance At each state, except As noted.

[‡] From 1987Ju04.
[#] Absolute intensity per 100 decays.
[@] Existence of this branch is questionable.

$\gamma(^{47}\mathrm{Sc})$

Iγ normalization: from Iβ to 767-keV state and Σ (Iγ(1+α)(out)-Iγ(1+α)(In)) for this state. 1969Wo02 did not observe (Iγ<2.E-5) the 1766 and 1836 gammas suggested by 1968Fi04.

 \mathbf{b}

E_{γ}^{\dagger}	I_{γ}^{b}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	δ	α^{\ddagger}	Comments
41.06 5	0.0083 [#] 10	807.89	3/2-	766.83	(3/2)+	(E1) [‡]		0.399	α (K)=0.363 6; α (L)=0.0321 5; α (M)=0.00392 6; α (N+)=0.000205 3 α (N)=0.000205 3
489.23 10	8.8 5	1297.12	5/2-	807.89	3/2-	M1+E2	-0.21 4	3.66×10 ⁻⁴ 10	
530.6 [@] 5	0.128 12	1297.12	5/2-	766.83	(3/2)+	(E1) [‡]		0.000188 <i>3</i>	$ \begin{array}{l} \alpha = 0.000188 \ 3; \ \alpha(\mathrm{K}) = 0.0001710 \ 25; \\ \alpha(\mathrm{L}) = 1.500 \times 10^{-5} \ 22; \ \alpha(\mathrm{M}) = 1.86 \times 10^{-6} \ 3 \\ \alpha(\mathrm{N}+) = 1.039 \times 10^{-7} \ 15 \\ \alpha(\mathrm{N}) = 1.039 \times 10^{-7} \ 15 \\ \mathrm{I}_{\gamma}: \ \mathrm{from} \ \mathrm{I}_{\gamma}(531) / \mathrm{I}_{\gamma}(489) = 0.0146 \ 10 \\ (1966 \mathrm{Fr} 14). \end{array} $
(731.6 ^{&})	0.017 3	1878.2	9/2-	1146.99?	11/2-	(M1+E2) [‡]	-0.14 [‡] 11	1.49×10 ⁻⁴ 5	$\alpha = 1.49 \times 10^{-4} 5$; $\alpha(K) = 0.000136 4$; $\alpha(L) = 1.19 \times 10^{-5} 4$; $\alpha(M) = 1.48 \times 10^{-6} 5$; $\alpha(N+) = 8.31 \times 10^{-8} 24$ $\alpha(N) = 8.31 \times 10^{-8} 24$ I_{γ} : from adopted branching ratios and $I_{\gamma}(1878\gamma) = 0.038 4$.
767.1 [@] 3	0.269 19	766.83	(3/2)+	0.0	7/2-	(M2) [‡]		0.000334 5	α =0.000334 5; α (K)=0.000304 5; α (L)=2.69×10 ⁻⁵ 4; α (M)=3.33×10 ⁻⁶ 5; α (N+)=1.87×10 ⁻⁷ 3 α (N)=1.87×10 ⁻⁷ 3 I _y : from I _Y (767)/I _Y (808)=0.0294 10 (1966Fr14) and decay scheme.
807.86 10	8.8 [#] 5	807.89	3/2-	0.0	7/2-	(E2) [‡]		0.000183 3	$ \begin{array}{l} \alpha = 0.000183 \ 3; \ \alpha(\mathrm{K}) = 0.0001667 \ 24; \\ \alpha(\mathrm{L}) = 1.467 \times 10^{-5} \ 21; \ \alpha(\mathrm{M}) = 1.82 \times 10^{-6} \ 3 \\ \alpha(\mathrm{N}+) = 1.015 \times 10^{-7} \ 15 \\ \alpha(\mathrm{N}) = 1.015 \times 10^{-7} \ 15 \end{array} $
(1146.97 ^{&} 4) 1297.09 10	0.017 <i>3</i> 100	(1146.99) 1297 12	11/2 ⁻ 5/2 ⁻	0.0	7/2 ⁻ 7/2 ⁻	M1+E2 ^a	$-0.020^{\ddagger a}$ 16	6.82×10^{-5} 10	I _{γ} : from intensity balance at 1147 state. $\alpha = 6.82 \times 10^{-5} \ 10^{\circ} \ \alpha$ (K)=4.40×10 ⁻⁵ 7.
1291.09 10	100	1291.12	512	0.0	1/2	IVII⊤L/∠	0.020* 10	0.02/10 10	$\begin{aligned} \alpha(L) &= 3.85 \times 10^{-6} \ 6; \ \alpha(M) &= 4.78 \times 10^{-7} \ 7; \\ \alpha(N+) &= 1.98 \times 10^{-5} \ 3 \\ \alpha(N) &= 2.69 \times 10^{-8} \ 4; \ \alpha(IPF) &= 1.98 \times 10^{-5} \ 3 \end{aligned}$

considered unlikely.

^b For absolute intensity per 100 decays, multiply by 0.67 13.

 $^{47}_{21}\mathrm{Sc}_{26}$ -3

 $^{47}_{21}{
m Sc}_{26}$