⁴⁷Ar β⁻ decay: tentative 2004We09

		History		
Type	Author	Citation	Literature Cutoff Date	
Full Evaluation	T. W. Burrows	NDS 108, 923 (2007)	20-Feb-2007	

Parent: ⁴⁷Ar: E=0.0; $J^{\pi}=(3/2^{-})$; $T_{1/2}=1.23 \text{ s } 3$; $Q(\beta^{-})=9.79\times10^{3} 10$; % β^{-} decay=100.0

Produced by a pulsed beam of 1.4 GeV protons (3×10^{13} protons/pulse) from the PSB accelerator impinging on a standard ISOLDE uranium carbide graphite target, heated to about 1900° C. The reaction products diffused from the heated target and effused *via* a low-temperature, water-cooled transfer line to a standard FEBIAD MK-7 plasma ion source, where the ionization by plasma discharge took place. A tungsten converter was placed parallel to the target, allowing one to switch to the neutron irradiation of the target by changing the focus of the proton beam from the target to the converter. Measured E γ , E β , I γ , I β , $\gamma\gamma$ - and $\beta\gamma$ -coin, and T_{1/2} using two Ge detectors and four 1.5-mm thick plastic detectors (for detecting β^{-} 's).

The level scheme is tentative As stated by 2004We09. The position of first two excited states and their transitions were known from 48 Ca(48 Ca,X γ). 1742 γ and 3822 γ placed according to coincidence relations. The relatively strong 3718 is not observed In coincidence with other γ 's and, therefore, assumed to deexcite the 3718 state. 2020 γ , 3420 γ , and 3357 γ placed solely on their energies.

⁴⁷K Levels

2004We09 adopt the following configurations for excited states In 47 K: $(sd)^{23}(f_{7/2})^8$ and $(sd)^{23}(f_{7/2})^7(f_{5/2},p_{3/2},p_{1/2})$ for positive-parity states, and $(sd)^{22}(f_{7/2})^8(f_{5/2},p_{3/2},p_{1/2})$ and $(sd)^{22}(f_{7/2})^9$ for negative-parity states.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	1/2+	17.50 s 24	$\%\beta^{-}=100$
			J^{π} , $T_{1/2}$, $\%\beta^-$: from the Adopted Levels.
360.0 10	$3/2^{+}$		J^{π} : from the Adopted Levels.
2020.0 15	$(7/2^{-})$		
3717.6? <i>7</i>	$(3/2^{-})$		
3762.1 <i>18</i>	$(5/2^{-})$		
5842.4 18	$(5/2^{-})$		

[†] From least-squares fit to Ey's assuming $\Delta E(\gamma)=1$ keV (evaluators).

β^- radiations

log $ft(\alpha)$ 2004We09 quote 7.9; which correspond to incorrectly assumed first-forbidden unique transition As stated by 2004WeZY. log $ft(\beta)$ too low for $\Delta J=2$. Notransition. Feeding considered As questionable by the evaluator.

E(decay)	E(level)	$I\beta^{-\dagger \#}$	Log ft	Comments
$(3.95 \times 10^3 \ 10)$	5842.4	3 1	5.0 2	av Eβ=1758 49
$(6.03\times10^3\ 10)$	3762.1	26 <i>3</i>	4.9 <i>1</i>	av E β =2774 49
$(6.07 \times 10^3 ^{\textcircled{0}} 10)$	3717.6?	9 2	5.4 <i>1</i>	av E β =2796 49
$(7.77 \times 10^3 ^{\textcircled{0}} 10)$	2020.0	7 3	6.0 2	av E β =3630 50
$(9.43 \times 10^3 \ 10)$	360.0	24 4	5.9 <i>1</i>	av E β =4446 50
$(9.79 \times 10^3 \ 10)$	0.0	26 [‡] 8	5.9 2	av E β =4623 50

 $^{^{47}}$ Ar-E,J^{π},T_{1/2}: From the Adopted Levels for 47 Ar. 2004We09 assumed a configuration of (sd)²²(f_{7/2})⁸(f_{5/2},p_{3/2},p_{1/2}).

⁴⁷Ar-Q(β^-): From 2003Au03.

⁴⁷Ar- $\%\beta^-$ decay: $\%\beta^-$ n<0.2 (2004We09).

[‡] From comparison of experimental to calculated decay patterns (2004We09), except As noted.

⁴⁷Ar β⁻ decay: tentative 2004We09 (continued)

β^- radiations (continued)

[†] All branching ratios are normalized based on the total decay strength deduced from intensities of the γ 's from ⁴⁷K decay. (relative I γ (586 γ)=147 *16* and I γ (2013 γ)=155 *15* from ⁴⁷K decay As measured by 2004We09 without tape MOVEMENT.). [‡] Observed ⁴⁷K activity corresponds to the buildup of the ⁴⁷Ar daughter. Therefore, intensities of the 586 γ and 2013 γ of ⁴⁷K

$\gamma(^{47}K)$

Iy normalization: from Σ Ti(to g.s.)=74 8 (evaluator).

E_{γ}	I_{γ}^{c}	E_i (level)	\mathtt{J}_{i}^{π}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult. [†]	$lpha^\dagger$	Comments
360‡#@	100	360.0	3/2+	0.0	1/2+	(M1,E2)	0.0011 7	α =0.0011 7; α (K)=0.0010 6; α (L)=9.E-5 5; α (M)=1.0×10 ⁻⁵ 6; α (N+)=3.5×10 ⁻⁷ 20
1660 ^{‡#}	53 5	2020.0	(7/2-)	360.0	3/2+	(M2)	9.12×10 ⁻⁵ <i>13</i>	α =9.12×10 ⁻⁵ $I3$; α (K)=3.70×10 ⁻⁵ 6 ; α (L)=3.10×10 ⁻⁶ 5 ; α (M)=3.37×10 ⁻⁷ 5 ; α (N+)=5.08×10 ⁻⁵ 8 α (N)=1.242×10 ⁻⁸ $I8$; α (IPF)=5.07×10 ⁻⁵ 8
1742 <mark>#&</mark>	41 4	3762.1	$(5/2^{-})$	2020.0	$(7/2^{-})$			
2020 ^{#ad}	7 1	2020.0	(7/2 ⁻)	0.0	1/2+	[E3]	0.000206 3	α =0.000206 3; α (K)=2.61×10 ⁻⁵ 4; α (L)=2.19×10 ⁻⁶ 3; α (M)=2.38×10 ⁻⁷ 4; α (N+)=0.0001779 25 α (N)=8.76×10 ⁻⁹ 13; α (IPF)=0.0001779 25
^x 3207 [#]	3 1							
^x 3316	1 <i>I</i>							
3357 ^{ad}	1 <i>1</i>	3717.6?	$(3/2^{-})$	360.0	3/2+			
3402 ^{#ad}	4 2	3762.1	$(5/2^{-})$	360.0	$3/2^{+}$			
3718 ^{#bd}	14 2	3717.6?	$(3/2^{-})$	0.0	1/2+			
3822 #& *4010	6 <i>1</i> 3 <i>1</i>	5842.4	(5/2-)	2020.0	(7/2-)			

[†] From the Adopted Gammas.

[‡] Observed ⁴⁷K activity corresponds to the buildup of the ⁴⁷Ar daughter. Therefore, intensities of the 586 γ and 2013 γ of ⁴⁷K represent 79% and 93% of the total ⁴⁷Ar decay flux, respectively. The total strength of ⁴⁷Ar decay measured In these γ 's is 174 13 In the same relative units As given for the ⁴⁷Ar decay γ 's. This value should Be compared to the Σ I γ (to g.s.), 128 3. Undetected decay to the g.s. is assumed to Be responsible for the rest of the decay strength, 46 13, which corresponds to a 26% 8 decay branching to the g.s..

[#] Absolute intensity per 100 decays.

[@] Existence of this branch is questionable.

[‡] Placement based on ${}^{48}\text{Ca}({}^{48}\text{Ca},\text{X}\gamma)$ study (2001Br35).

[#] Transition not observed In neutron-converter spectrum.

[@] Transition contaminated In the neutron-converter spectrum by 359 and 362 γ 's In ⁹⁴Kr and ¹⁴¹Xe, respectively.

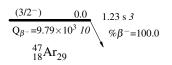
[&]amp; Placement based on observed coincidences.

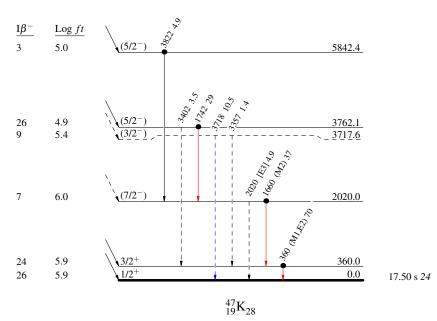
^a Tentative placement based on on the energy.

^b Relatively strong γ not In coincidence with any other γ .

^c For absolute intensity per 100 decays, multiply by 0.70 12.

^d Placement of transition in the level scheme is uncertain.


 $^{^{}x}$ γ ray not placed in level scheme.


⁴⁷Ar β ⁻ decay: tentative 2004We09

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

$\begin{array}{c|c} Legend \\ \hline & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ \hline & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ \hline & I_{\gamma} > 10\% \times I_{\gamma}^{max} \\ \hline & I_{\gamma} > 10\% \times I_{\gamma}^{max} \\ \hline & Observe & \gamma Decay (Uncertain) \\ \hline & Coincidence \\ \end{array}$

