Adopted Levels, Gammas

					History		
Туре		Author		Ci	itation	Literature Cutoff Date	
	Fu	Ill Evaluation	T. W. B.	urrows	NDS 108	8,923 (2007)	20-Feb-2007
$Q(\beta^{-})=6631 \ 3$; S(n Note: Current evalu)=8369.4 <i>16</i> ; ation has used	$S(p)=1.327\times10$ d the following	$0^4 4$; Q(α) g Q record	=-1.38 6644	1×10 ⁴ 10 8 8349	2012Wa38 1613270	40 2003Au03.
					⁴⁷ K Leve	els	
			(Cross Re	ference (X	(REF) Flags	
			_		()8	
		A 47 A	$r \beta^-$ decay	: tentat	ive D	$^{48}Ca(d, {}^{3}He)$	$(pol d, {}^{3}He), (t, \alpha)$
		$C = \frac{18}{48}C$	$a(\mu,n\gamma)$: A a(e,e'p) E:	t rest =440 M	eV F	$^{10}Ca(^{10}Ca, 2)$	$(\chi \gamma) = 210 \text{ MeV}$ $(\chi \gamma)$
E(laval) [†]	īπ‡	т#	VDEE			- ((,-	Comments
E(level)	$\int \frac{1}{\sqrt{2}}$	11/2	AREF	~ ~-	100		Comments
0	1/2+@&a	17.50 s 24	ABCDEF	$\%\beta^{-}=$ $\mu=+1$ T=9/2 $J^{\pi}: J=$ $T_{1/2}:$ 17.5 100 $\mu: AB$	100 933 9 (20); Configur 1/2 from 4 weighted a 5 s 3 (1964 (1970Wa29) LS. ³⁹ K s	05St24,1982T ation=((48CA ABLS (1982T average of 17. 4Ku02. γ (t); F Θ . γ (t)). tandard.	b02) ($\lambda 0^+$)($\nu 2s_{1/2}$) ⁻¹) (1984Al18) ($\lambda 0^-$). $J^{\pi}=1/2^+$ from L=0. ($5 \ s \ 4 \ (1981HuZT. \ \beta(t), 4\pi\beta, \text{ or } \gamma(t))$ and $E_{\gamma}>1.85$ MeV, NaI. Chem). Other: 18.0 s
360.0 ^b 10	3/2+∾	1.1 ns <i>3</i>	ABCDEF	T=9/2			
2020.0 ^b 15	(7/2 ⁻) ^{&}	6.3 ns 4	A DEF	J ^π : (7, 5/2 7/2 (20	/2 ⁻) from ⁺ ; a pure I ⁻ from cor 04We09) i	$\sigma(\theta)$ and A($\theta)$ $\lambda=3$ transfer d nparison of ex n β^- decay.) in (d, ³ He),(pol d, ³ He). Either 7/2 ⁻ or loes not reproduce $\sigma(\theta)$ (1987Og01) in (t, α). experimental to calculated decay patterns
2287.0 ^b 18	,		Е				
3.35×10^3 3	$5/2^+, 3/2^+$		DE				
3432 19	$(5/2)^{+\alpha}$						
$3/1/.0^{\circ}$ /	$(5/2)^{-}$		A D				
3.85×10^3 2	$(3/2)^{+}$						
$3.93 \times 10^{3} 2$	$3/2^{+c}$		CD				
$4.17 \times 10^3 6$,		D				
$4.36 \times 10^3 4$			D				
4434.1 ⁰ 20			E				
$4.74 \times 10^{3} 4$			D				
5220 20	5/2+		CD				
5465 25	5/2+		CD				
$5.79 \times 10^{3} 2$	8.0		D				
5842.4 ⁰ 18	$(5/2^{-})^{\alpha}e$		Α				
$0.13 \times 10^{3} 4$	5/2°,3/2°		ע				
6.20×10^{-4}			ע ת				
6462 32	$(5/2)^+$		CD				
$6.87 \times 10^3 4$	$(5/2)^+$		CD				
$7.15 \times 10^3 5$			D				
7.38×10 ³ 4			D				

Adopted Levels, Gammas (continued)

⁴⁷K Levels (continued)

E(level) [†]	Jπ‡	XREF
7.57×10 ³ 3	$(5/2)^+$	D
7762 33	$(5/2)^+$	CD
8035 <i>38</i>	$(5/2)^+$	CD
8530? 20	$5/2^+, 3/2^+d$	D

[†] From ⁴⁸Ca(d, ³He),(pol d, ³He),(t, α), except as noted.

[‡] From comparison to A(θ) for the 3.93- and 5.46-MeV states in (pol d,³He), except as noted.

[#] From $\gamma\gamma(t)$ in ¹⁹⁸Pt(⁴⁸Ca,X γ), except as noted.

[@] The strength of the g.s. and 3.85-MeV state exhaust 90% of shell-model sum rule (1985Ba14) in (d,³He).

[&] See β^- decay for configurations suggest by 2004We09.

^a See 2006Ga31 for a study of the systematics of the d3/2-s1/2 proton hole splitting in the odd-mass K, Cl, and P isotopes for N=20-28 and d5/2-d3/2 for ³⁹K and ⁴⁷K. ^{*b*} From least-squares fit to $E\gamma$'s assuming $\Delta E(\gamma)=1$ keV.

^c The combined strength of the 360 and 3930 states exceeds the shell-model sum rule for d3/2 (1987Og01,1985Ba14) in (d,³He) and (t, α) .

^d From angular momentum transfer in (d,³He).

^e From comparison of experimental to calculated decay patterns (2004We09) in β^- decay.

$\gamma(^{47}\text{K})$

See β^- decay for unplaced gammas.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	α@	Comments
360.0	3/2+	360‡	100	0	1/2+	(M1,E2)	0.0011 7	$\alpha(K)=0.0010\ 6;\ \alpha(L)=9.E-5\ 5;\ \alpha(M)=1.0\times10^{-5}\ 6;\ \alpha(N+)=3.5\times10^{-7}\ 20$
								Mult.: D,E2 from comparison to RUL. $\Delta \pi$ =no from level scheme.
2020.0	$(7/2^{-})$	1660	100 10	360.0	3/2+	(M2) [#]	9.12×10 ⁻⁵ 13	B(M2)(W.u.)=0.026 4
								$\alpha(K)=3.70\times10^{-5} 6$; $\alpha(L)=3.10\times10^{-6} 5$; $\alpha(M)=3.37\times10^{-7} 5$; $\alpha(N+)=5.08\times10^{-5} 8$
								$\alpha(N)=1.242\times10^{-8}$ 18; $\alpha(IPF)=5.07\times10^{-5}$ 8
		2020 ^{&}	13.2 19	0	$1/2^{+}$	[E3]	0.000206 3	B(E3)(W.u.)=1.25 23
								$\alpha(K)=2.61\times10^{-5} 4; \ \alpha(L)=2.19\times10^{-6} 3; \ \alpha(M)=2.38\times10^{-7} 4; \ \alpha(N+)=0.0001779 25$
								$\alpha(N)=8.76\times10^{-9}$ 13; $\alpha(IPF)=0.0001779$ 25
2287.0		267 [‡]		2020.0	$(7/2^{-})$			
3.35×10^{3}	5/2+,3/2+	1319 [‡]		2020.0	$(7/2^{-})$			
3717.6	$(3/2^{-})$	3357 <mark>&</mark>	77	360.0	$3/2^{+}$			
		3718 <mark>&</mark>	100 15	0	$1/2^{+}$			
3762.1	$(5/2^{-})$	1742	100 10	2020.0	$(7/2^{-})$			
		3402 ^{&}	10 5	360.0	$3/2^{+}$			
4434.1		1094‡		3.35×10^{3}	5/2+,3/2+			
		2147 [‡]		2287.0				
5842.4	$(5/2^{-})$	3822	100	2020.0	$(7/2^{-})$			

[†] From β^- decay, except as noted. [‡] From ⁴⁸Ca(⁴⁸Ca,X γ).

ω

$\Delta J=2$ from W(in plane)/W(out of plane) in ¹⁹⁸Pt(⁴⁸Ca,X γ); $\Delta \pi$ =yes from level scheme. @ Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

Legend

Level Scheme

Intensities: Relative photon branching from each level

 $-- \rightarrow \gamma$ Decay (Uncertain)

 $^{47}_{19}
m K_{28}$