¹H(⁴⁶Ar,p):resonance 2018Br04

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	S. Ota and E. A. Mccutchan	NDS 203,1 (2025)	1-Apr-2025			

2018Br04: Resonant elastic proton scattering on ⁴⁶Ar. An ⁴⁶Ar beam was produced by a 140 MeV/u ⁴⁸Ca beam and reaccelerated to 4.6 MeV/u at ReA3, NSCL. Fragments were selected using the A1900 fragment separator and identified using a thin ion chamber. Selected beam particles were transported into the active volume of the Active-Target Time Projection Chamber (AT-TPC), filled with isobutane (C₄H₁₀) and placed in a uniform magnetic field generated by a solenoidal magnet. Recoiling protons were detected in the sensor plane on the end of AT-TPC, consisting of a mosaic of 10240 equilateral triangles for x and y position information. Measured proton tracks, $\sigma(E_p)$. Deduced resonance energies, widths, J, π , spectroscopic factors from R-Matrix analysis; deduced isobaric analogue states in ⁴⁷Ar.

⁴⁷K Levels

All resonance properties including energies, J, π , widths, spectroscopic factors (S) are extracted from an R-Matrix fit to measured cross sections.

E(level) [†]	\mathbf{J}^{π}	Г	S	Comments
15.91×10 ³ 11	3/2-	15 keV 10	0.27	$E_{res}(c.m.)=2680 \ 108(syst)20(stat).$ isobaric analogue state in ⁴⁷ Ar at $E_x=0.91$ (syst) 28 (stat). $\Gamma_p=4.3$ keV 4; uncertainties of S=3 (syst) +21-13 (stat). $T_z=11/2$ (⁴⁷ Ar).
16.13×10 ³ 12	1/2+	30 keV 10	0.027	E _{res} (c.m.)=2990 +117-124 (syst) 20 (stat). isobaric analogue state in ⁴⁷ Ar at E _x =310 +91-92 (syst) 28 (stat). Γ_p =20 keV 2; uncertainties of S=6 (syst) +13-7 (stat). T _z =9/2 (⁴⁷ K).
16.51×10 ³ <i>13</i>	1/2+	18 keV <i>10</i>	0.008	$E_{res}(c.m.)=3280 + 125 - 127$ (syst) 20 (stat). isobaric analogue state in ⁴⁷ Ar at $E_x=600 + 92 - 93$ (syst) 28 (stat). $\Gamma_p=8.0$ keV 8; uncertainties of S=2 (syst) +5-6 (stat). $T_z=9/2$ (⁴⁷ K).
16.88×10 ³ 14	1/2-	34 keV 10	0.42	$ \begin{split} & E_{res}(c.m.) = 3650 + 137 - 147 \text{ (syst) } 20 \text{ (stat).} \\ & \text{isobaric analogue state in } ^{47}\text{Ar at } E_x = 970 + 95 - 99 \text{ (syst) } 28 \text{ (stat).} \\ & \Gamma_p = 24 \text{ keV } 2; \text{ uncertainties of } S = 5 \text{ (syst) } 9 \text{ (stat).} \\ & T_z = 11/2 \text{ (}^{47}\text{Ar}\text{).} \end{split} $

[†] Deduced from $E_{res}(c.m.)$ and $S_p=13230 \ 3 \ (2021Wa16)$ by evaluators.