Adopted Levels, Gammas

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	T. W. Burrows	NDS 108,923 (2007)	20-Feb-2007					

 $Q(\beta^{-})=-1.200\times 10^{4} 4$; S(n)=13159 22; S(p)=4775 7; Q(α)=-7665 10 2012Wa38

Note: Current evaluation has used the following Q record -12300 syst 13156 24 4774 14 -7662 16 2003Au03.

 $Q(\beta^{-})$: Estimated uncertainty=160 keV.

Other: 2000HaZY.

The level scheme of 1998Be69 in ${}^{10}B({}^{40}Ca,p2n\gamma)$ and that of 1994Ca04 in ${}^{10}B({}^{40}Ca,p2n\gamma)$ are consistent through the 5903, 23/2⁻ state. 1998Be69 did not observe the 1823 γ assigned as 27/2- \rightarrow 23/2⁻ by 1994Ca04 and assigned the 2112 γ to the 10019, 31/2⁻, level instead of the 9841.

 $31/2^-$, level instead of the 9841. The work of 1998Be69 in ${}^{24}Mg({}^{28}Si,\alpha n\gamma)$ showed no evidence for the 1823 γ assigned as $27/2 \rightarrow 23/2^-$ by 1994Ca04 in ${}^{40}Ca({}^{12}C,n\alpha\gamma)$ and, therefore, this has not been adopted by the evaluator.

⁴⁷Cr Levels

Cross Reference (XREF) Flags

A	47 Mn β^+ decay	D	24 Mg(28 Si, α n γ), 28 Si(28 Si, 2α n γ)
В	⁴⁸ Fe β^+ p decay	Е	${}^{50}\text{Cr}({}^{3}\text{He},{}^{6}\text{He})$
С	${}^{10}B({}^{40}Ca,p2n\gamma), {}^{40}Ca({}^{12}C,n\alpha\gamma),$		

E(level) [†]	\mathbf{J}^{π}	T _{1/2} ‡	XREF	Comments
0.0	3/2-	500 [#] ms 15	ABCDE	$\%\varepsilon + \%\beta^+ = 100$
99.1	(5/2 ⁻)	≤2.1 ns	CDE	J^{π} : from super-allowed β^+ decay to $3/2^-$, ${}^{47}V$ g.s. J^{π} : 1/2, 5/2 from stretched D γ to 3/2 ⁻ . (5/2,7/2,9/2) from D γ from (7/2 ⁻); deexcitation patterns and similarity with the mirror nucleus ${}^{47}V$.
174.2 [@]	(7/2 ⁻)	≤2.1 ns	CDE	J ^{π} : $\leq 7/2^{-}$ from D,E2 γ to $3/2^{-}$. $7/2^{-}$ from the comparison of the γ -ray spectrum and level scheme in $^{24}Mg(^{28}Si,\alpha n\gamma)$ with the corresponding spectrum and level scheme for ^{47}V ; similarity of $\sigma(\theta)$ to the ($^{3}He,^{6}He$) $\sigma(\theta)$ to 2.79-MeV, $7/2^{-}$, state in ^{39}Ca .
471.7 ^a	(3/2+)		CE	J ^{π} : (3/2,7/2) from stretched D γ from 1/2,5/2. 3/2 ⁺ from deexcitation patterns and similarity with the mirror nucleus ⁴⁷ V; similarity of $\sigma(\theta)$ to the (³ He. ⁶ He) $\sigma(\theta)$ to g.s., 3/2 ⁺ , state in ³⁹ Ca.
870.1 ^a	(5/2+)		CE	J^{π} : 1/2,5/2 from stretched D γ to 3/2 ⁻ . 5/2 ⁺ from deexcitation patterns and similarity with the mirror nucleus ⁴⁷ V.
1332.1 [@] 1345.5 ^a 1451 9 1541 15	$(11/2^{-})^{b}$ $(7/2^{+})^{c}$		CDe Ce E E	
1831 8	$(1/2^+)$		E	J ^{π} : from analogy to 1661, 1/2 ⁺ , state in ⁴⁷ V (Δ E(Coul)=8397 13) and similarity of $\sigma(\theta)$ to the (³ He, ⁶ He) $\sigma(\theta)$ to 2.47-MeV, 1/2 ⁺ , state in ³⁹ Ca.
1956.3 ^{<i>a</i>} 2131 9 2406 <i>10</i> 2557 <i>10</i>	$(9/2^+)^d$		C E E E	
2618.3 ^{<i>a</i>} 2653.8 ^{<i>@</i>} 2848 <i>10</i> 3430 <i>10</i>	$(11/2^+)^d$ $(15/2^-)^b$	0.583 ^e ps 83	C E CDE E F	
3470.5 ^{<i>a</i>}	(13/2 ⁺) ^d		C	

Adopted Levels, Gammas (continued)

⁴⁷Cr Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2} ‡	XREF	Comments
3504 11			E	
3747 11			E	
3766.4 <mark>&</mark>	(17/2 ⁻)		C	J ^{π} : (13/2,17/2) from stretched D γ to (15/2 ⁻). 17/2 ⁻ from membership in band.
4139.0 [@]	$(19/2^{-})^{b}$	0.305 ^e ps 42	CD	
4169 12		I I	Е	
4214.9 ^a	$(15/2^+)^{C}$		С	
4295 12			E	
5375.0			С	
5409 15			E	
5905.0 [@]	$(23/2^{-})^{b}$	<0.444 ^e ps	CD	
7379.0 <mark>&</mark>	$(25/2^{-})$		D	J^{π} : mirror of the 7397 keV, 25/2 ⁻ state in ⁴⁷ V.
7911.0 [@]	$(27/2^{-})^{f}$		D	
10022@	$(31/2^{-})^{f}$		D	

[†] From least-squares fit to $E\gamma$, assuming $\Delta E_{\gamma}=1$ keV, except for states observed only in ⁵⁰Cr(³He,⁶He).

[±] From $\gamma\gamma$ (t) in ¹⁰B(⁴⁰Ca,p2n γ), ⁴⁰Ca(¹²C,n $\alpha\gamma$),..., except as noted to possible contamination from ⁴⁶V (see discussion in 1985Bu07).

[#] Unweighted av of 472.0 ms 63 (1988HaZB. β^+ 's; $\Delta E/E$ scin telescope, tape transport, ms), 508 ms 10 (1985Bu07. 88 γ,γ^\pm ; low-energy photon system, Ge(Li)), and 520 ms 40 (1985HoZS. $\beta\gamma$ (t); He-jet). The discrepancy between the γ and β^+ measurements is unexplained; 1988HaZB excluded the possibility of contamination by ⁴⁶V. Others: 452 ms 18 (1977Ho25. $E\beta+>4.8$ MeV; scin) and 460 ms 15 (1977Ed01. 1 MeV $\leq E\beta+\leq 4$ MeV; He-jet chopper, scin) excluded due.

^(a) Band(A): $K^{\pi}=7/2^{-}$ band, $\alpha=-1/2$ (1998Be69,1994Ca04). 1998Be69 confirmed the $\alpha=-1/2$ states of the yrast band proposed by 1994Ca04 through the 5905, $23/2^{-}$ state. 1998Be69 did not observe the 1823 γ assigned as $27/2 \rightarrow 23/2^{-}$ by 1994Ca04 and assigned the 2112 γ to the 10019, $31/2^{-}$, level instead of the 9841.

[&] Band(B): $K^{\pi} = 7/2^{-}$ band, $\alpha = +1/2$ (1994Ca04). 25/2⁻ state added by 1998Be69.

^{*a*} Band(C): positive-parity side band (1994Ca04).

^b J \rightarrow J or J \rightarrow J-2 d,Q or D,E2 cascade to (7/2⁻). Comparison of the γ -ray spectrum and level scheme in ²⁴Mg(²⁸Si, α n γ) with the corresponding spectrum and level scheme for ⁴⁷V.

^c From deexcitation patterns and similarity with the mirror nucleus ⁴⁷V.

^d From J \rightarrow J or J \rightarrow J-2 γ cascade to (5/2⁺) and deexcitation patterns and similarity with the mirror nucleus ⁴⁷V.

^{*e*} From DSAM in ${}^{24}Mg({}^{28}Si,\alpha n\gamma),{}^{28}Si({}^{28}Si,2\alpha n\gamma)$.

^{*f*} From the comparison of the γ -ray spectrum and level scheme in ²⁴Mg(²⁸Si, $\alpha n\gamma$) with the corresponding spectrum and level scheme for ⁴⁷V.

γ (⁴⁷ Cr)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	α ^{g}	Comments
99.1	(5/2 ⁻)	98.7	100	0.0 3/2-	(M1) [@]	0.0269	B(M1)(W.u.)>0.010 α (K)=0.0242 4; α (L)=0.00232 4; α (M)=0.000306 5; α (N+)=1.120×10 ⁻⁵ 16 α (N)=1.120×10 ⁻⁵ 16
174.2	(7/2 ⁻)	74.7	≈100	99.1 (5/2 ⁻)	(M1) ^{&}	0.0566	B(M1)(W.u.)>0.023 α (K)=0.0510 8; α (L)=0.00492 7; α (M)=0.000647 9; α (N+)=2.36×10 ⁻⁵ 4 α (N)=2.36×10 ⁻⁵ 4
		173.4	1.4	0.0 3/2-	(E2) ^{<i>a</i>}	0.0494	B(E2)(W.u.)>2.2 α (K)=0.0445 7; α (L)=0.00430 6; α (M)=0.000561 8;

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

γ ⁽⁴⁷Cr) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	E_f	\mathbf{J}_{f}^{π}	Mult.#	α^{g}	Comments
								α (N+)=1.96×10 ⁻⁵ 3 α (N)=1.96×10 ⁻⁵ 3
471.7	$(3/2^+)$	372.2 [‡]	17	99.1	$(5/2^{-})$			
	(-/-)	472 [‡]	100	0.0	3/2-			
870.1	$(5/2^+)$	399‡	30	471.7	$(3/2^+)$	D ^b		
		770 [‡]	10	99.1	$(5/2^{-})$			
		871 [‡]	100	0.0	3/2-	D ^b		
1332.1	$(11/2^{-})$	1157.7	100	174.2	$(7/2^{-})$	D,Q ^C		
1345.5	$(7/2^+)$	474 [‡]	100	870.1	$(5/2^+)$			
		873 [‡]	75	471.7	$(3/2^+)$			
		1248 [‡]	25	99.1	(5/2 ⁻)			
1956.3	$(9/2^+)$	610	8	1345.5	$(7/2^+)$			
		1088+	100	870.1	$(5/2^+)$	D,Q ^C		
		1781+	42	174.2	$(7/2^{-})$			
2618.3	$(11/2^+)$	662+	5	1956.3	$(9/2^+)$			
		1273+	100	1345.5	$(7/2^+)$	D,Q ^C		
2652 0	(15/2-)	1200	50 100	1222.1	(11/2)	(E2)cd	0.0001160.17	$P(E2)(W_{12}) - 24.4$
2035.8	(13/2)	1321.7	100	1552.1	(11/2)	(E2)**	0.0001100 17	$\begin{array}{l} \alpha(\mathrm{K}) = 2.44 \times 10^{-5} \ 11; \ \alpha(\mathrm{L}) = 6.87 \times 10^{-6} \ 10; \\ \alpha(\mathrm{M}) = 9.04 \times 10^{-7} \ 13; \ \alpha(\mathrm{N}+) = 3.39 \times 10^{-5} \end{array}$
								5 (N) 2 40 10 ⁻⁸ 5 (DE) 2 20 10 ⁻⁵ 5
2470 5	$(12/2^{+})$	050	5	2619.2	$(11/2^{+})$			$\alpha(N) = 3.40 \times 10^{-6} \text{ S}; \ \alpha(IPF) = 3.39 \times 10^{-6} \text{ S}$
3470.5	$(13/2^{+})$	852 *	5 100	2618.3	$(11/2^{+})$	DOC		
27664	(17/2-)	1514*	100	1956.3	$(9/2^{-})$	D,Q^{e}		
3/00.4	(1/2)	272	100	2053.8	(15/2)		0.001000 14	$D(M1)(W_{re}) = 0.067, 10$
4139.0	(19/2)	372*	5	3766.4	(17/2)	(M1)~	0.001000 14	B(M1)(W.u.)=0.067 10 $\alpha(K)=0.000907 13; \alpha(L)=8.47\times10^{-5} 12;$ $\alpha(M)=1.114\times10^{-5} 16$ $\alpha(N+)=4.17\times10^{-7} 6$ $\alpha(N)=4.17\times10^{-7} 6$
		1485.7	100	2653.8	(15/2-)	(E2) <i>cd</i>	0.0001470 21	$B(E2) \downarrow = 24.4$
								$\alpha(\mathbf{K}) = 5.82 \times 10^{-5} \ 9; \ \alpha(\mathbf{L}) = 5.37 \times 10^{-6} \ 8; \\ \alpha(\mathbf{M}) = 7.07 \times 10^{-7} \ 10; \ \alpha(\mathbf{N}+) = 8.24 \times 10^{-5} \\ 12$
								$\alpha(N)=2.66\times10^{-8}$ 4; $\alpha(IPF)=8.24\times10^{-5}$ 12
4214.9	$(15/2^+)$	744‡	25	3470.5	$(13/2^+)$			
		1597‡	100	2618.3	$(11/2^+)$			
5375.0		1236	100	4139.0	$(19/2^{-})$	D ^b		
5905.0	$(23/2^{-})$	530 [‡]	13	5375.0		(M1) ^{&}	0.000453 7	B(M1)(W.u.)>0.038
								$\alpha(K)=0.000410 \ 6; \ \alpha(L)=3.81\times10^{-5} \ 6; \\ \alpha(M)=5.01\times10^{-6} \ 7; \ \alpha(N+)=1.88\times10^{-7} \ 3 \\ \alpha(N)=1.88\times10^{-7} \ 3$
		1766.0	100	4139.0	(19/2 ⁻)	(E2) ^{cd}	0.000248 4	B(E2)(W.u.)>6.5 α (K)=4.14×10 ⁻⁵ 6; α (L)=3.81×10 ⁻⁶ 6; α (M)=5.01×10 ⁻⁷ 7; α (N+)=0.000202 3 (A)= 4.90×107 ⁸ 2; α (DE)= 0.000202 2
7379.0	(25/2-)	1474 ^e		5905.0	(23/2-)			$\alpha(n)=1.89\times10^{\circ}$ 3; $\alpha(1PF)=0.000202$ 3

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

$\gamma(^{47}Cr)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}
7911.0	$(27/2^{-})$	532 ^e	7379.0	$(25/2^{-})$
		2006 ^e	5905.0	$(23/2^{-})$
10022	$(31/2^{-})$	2111.5 ^f	7911.0	$(27/2^{-})$

[†] Mean of $E\gamma$'s from ${}^{10}B({}^{40}Ca,p2n\gamma)$ and ${}^{24}Mg({}^{28}Si,\alpha n\gamma),{}^{28}Si({}^{28}Si,2\alpha n\gamma)$, except as noted.

[‡] From ${}^{10}B({}^{40}Ca,p2n\gamma)$.

[#] From angular anisotropy in ${}^{10}B({}^{40}Ca,p2n\gamma)$, except as noted.

[@] Stretched dipole. $\Delta \pi$ =no from level scheme.

& D from comparison to RUL. $\Delta \pi$ =no from level scheme.

^{*a*} D,E2 from comparison to RUL. ΔJ^{π} =2,no from level scheme.

^b Stretched dipole.

^{*c*} J \rightarrow J or J \rightarrow J-2 transition.

^d D,Q from angular isotropy in ¹⁰B(⁴⁰Ca,p2n γ). Ne M2 from comparison to RUL. ΔJ^{π} =2,no from level scheme.

^{*e*} From ²⁴Mg(²⁸Si, α n γ).

^{*f*} Placed from 9841, $31/2^{-}$, in ¹⁰B(⁴⁰Ca,p2n γ).

^g Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 $^{47}_{24}Cr_{23}$

5

 $^{47}_{24}Cr_{23}$