48 Ca(48 Ca,X γ) 2001Br35

History									
Type	Author	Citation	Literature Cutoff Date						
Full Evaluation	S. Ota and E. A. Mccutchan	NDS 203.1 (2025)	1-Apr-2025						

2001Br35: $E(^{48}Ca)$ =210 MeV. Measured E γ , I γ , $\gamma\gamma$ -coin using GASP array at the INFN Legnaro Laboratory. Target was 1.2 mg/cm² ^{48}Ca backed by thick ^{208}Pb .

⁴⁷Ca Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments				
0	7/2-					
2013.7	3/2-					
2578.5	$3/2^{+}$					
2599.8	$1/2^{+}$					
3562.5	$(9/2^{-})$					
3934.1	$(11/2^{-})$	J^{π} : 2001Br35 notes that previous assignment of $(7/2^+,5/2^-)$ is in conflict with observed decay pattern.				
3999.5	$(13/2^+)$					
4402.7		J^{π} : 2001Br35 notes that previous assignment of $1/2^{-}$ is in conflict with observed decay pattern.				
4810.7		J^{π} : 2001Br35 notes that previous assignment of 3/2 ⁻ is in conflict with observed decay pattern.				

E_{γ}	$E_i(level)$	J_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.
65.3	3999.5	$(13/2^+)$	3934.1	$(11/2^{-})$	(E1) [†]
403.2	4402.7		3999.5	$(13/2^+)$	
408	4810.7		4402.7		
437.0	3999.5	$(13/2^+)$	3562.5	$(9/2^{-})$	$(M2)^{\dagger}$
564.8	2578.5	3/2+	2013.7	3/2-	
586.0	2599.8	$1/2^{+}$	2013.7	$3/2^{-}$	
2013.7	2013.7	$3/2^{-}$	0	$7/2^{-}$	
3562.4	3562.5	$(9/2^{-})$	0	$7/2^{-}$	
3933.8	3934.1	$(11/2^{-})$	0	$7/2^{-}$	
3999.4	3999.5	$(13/2^+)$	0	$7/2^{-}$	(E3) [†]

 $^{^{\}dagger}$ Suggested multipolarity based on observed γ branching.

 $^{^{\}dagger}$ From least-squares fit to Ey's by evaluators. ‡ As given in 2001Br35 based on previous literature.

⁴⁸Ca(⁴⁸Ca,Χγ) **2001Br35**

Level Scheme

