⁹Be(⁴⁸K, ⁴⁷Arγ) **2016Ga14** History | Type | Author | Citation | Literature Cutoff Date | | |-----------------|----------------------------|------------------|------------------------|--| | Full Evaluation | S. Ota and E. A. Mccutchan | NDS 203,1 (2025) | 1-Apr-2025 | | Data from 2016Ga14 includes 12 C(46 Ar, 47 Ar γ), one-neutron pickup reaction. See that dataset for additional details. 2016Ga14: $E(^{48}K)=87.5$ MeV/nucleon beam produced in 9 Be(48 Ca,X),E=140 MeV/nucleon primary reaction, using A1900 fragment separator at NSCL-MSU facility. Reaction target=376 mg/cm² 9 Be. Recoil products were identified using S800 spectrograph based on ΔE and time-of-flight measurements. Measured recoil- γ , $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin using SEGA array of 32-fold segmented HPGe detectors. ### ⁴⁷Ar Levels Experimental partial σ values read by evaluator from Fig. 5a of 2016Ga14. | E(level) [†] | $J^{\pi \ddagger}$ | Comments | | | | |-----------------------|--------------------|---|--|--|--| | 0 | 3/2- | Measured partial cross section=2.6 mb 5. | | | | | | | Inclusive σ =5.4 mb 3 for one-proton removal, derived from yield of ⁴⁷ Ar reaction products and number of incoming ⁴⁸ K projectiles, 5% systematic uncertainty has been added in quadrature. | | | | | 1230 4 | $5/2^{-}$ | Measured partial cross section=1.9 mb 5. | | | | | 1745 <i>5</i> | $7/2^{-}$ | Measured partial cross section=0.4 mb 1. | | | | | 2186 <i>6</i> | $3/2^{-}$ | Measured partial cross section= $0.5 \text{ mb } I$. | | | | | 2763 9 | 5/2- | E(level): this level not shown as populated in Fig. 3b of 2016Ga14. | | | | $^{^{\}dagger}$ Deduced by evaluators from least-squares fit to Ey. #### $\gamma(^{47}Ar)$ | E_{γ}^{\dagger} | $E_i(level)$ | \mathbf{J}_i^{π} | \mathbb{E}_f | \mathbf{J}_f^{π} | Comments | |------------------------|--------------|----------------------|----------------|----------------------|--| | 516 5 | 1745 | 7/2- | 1230 | 5/2- | E_{ν} : 515 in level-scheme Fig. 3b of 2016Ga14. | | 955 6 | 2186 | $3/2^{-}$ | 1230 | $5/2^{-}$ | E_{γ} : 956 in level-scheme Fig. 3b of 2016Ga14. | | 1018 7 | 2763 | 5/2- | 1745 | $7/2^{-}$ | This γ from spectrum Fig. 2 of 2016Ga14, not shown in authors' Fig. 3b. | | 1229 5 | 1230 | $5/2^{-}$ | 0 | $3/2^{-}$ | E_{γ} : 1231 in level-scheme Fig. 3b of 2016Ga14. | | 1745 <i>6</i> | 1745 | $7/2^{-}$ | 0 | $3/2^{-}$ | , | | 2188 8 | 2186 | $3/2^{-}$ | 0 | $3/2^{-}$ | | [†] From spectral figure in Fig. 2b in 2016Ga14. [‡] From 2016Ga14, based on previous assignments and comparisons with shell-model calculations. ## 9 Be(48 K, 47 Ar γ) 2016Ga14 ## Level Scheme