$^{12}C(^{40}Ca, \alpha 2p\gamma)$ 1991Ca23

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Sc. Wu	NDS 91, 1 (2000)	15-Jul-2000

 $E(^{40}Ca)=160$ MeV (1991Ca23); 16 Ge detectors each escape suppressed with BGO shield for γ -ray measurements. Recoil separator with two Wien filters and a position-sensitive detector with a split anode ionization chamber for recoil particles. Measured: γ , $\gamma\gamma$, $\gamma(\theta)$. ⁴⁰Ca(¹²C, α 2p γ): E(¹²C)=20-62 MeV (1976Fo22); measured: γ , $\gamma\gamma$, $\gamma(\theta)$.

⁴⁶Ti Levels

E(level) [†]	J ^π @	E(level) [†]	J ^π @	E(level) [†]	J ^π @	E(level) [†]	J ^π @
0.0^{\ddagger}	0+ <i>a</i>	3724.1 12	(2 ⁺) ^{<i>a</i>}	4897.0 [‡] 10	8+ <mark>&</mark>	7960.7 [#] 16	10 ^{-<i>a</i>}
889.0 [‡] 5	2+ &	3827.6 9	5-	5023.6 13		8219.1 [‡] <i>13</i>	12+ <mark>&</mark>
2009.6 [‡] 7	4+ <mark>&</mark>	3851.6 [#] 9	<u>5</u> - &	5197.7 [#] 10	7-	8285.1 15	$(11, 12^+)$
3058.6 [#] 9	3- &	4322.6 13		6149.7 [#] <i>13</i>	8-	8716.0 [#] 15	(11 ⁻)
3168.1 12	1 ^{-a}	4415.6 <i>13</i>	(6 ⁻)	6200.9 11	(7)	10042.1 [‡] <i>15</i>	12^{+}
3298.6 [‡] 8	6^{+} &	4523.6 11	$(4^+, 5, 6^-)$	6242.1 [‡] 11	10+ <mark>&</mark>		
3441.6 [#] 9	4 ^{-&}	4661.6 [#] 11	6-	6828.9 [#] 11	9-		
3568.9 9	3- &	4726.7 11	$(5^-, 6^+)$	7942.1 [‡] <i>13</i>	11+ &		

[†] Deduced by evaluator from a least-square fit assuming 1 keV γ -ray energy uncertainties, except those with higher precision from 1976Fo22.

 $\gamma(^{46}\text{Ti})$

[‡] Band(A): $K^{\pi}=0^+$ g.s. band.

[#] Band(B): $K^{\pi}=3^{-}$ band.

[@] Based on analysis of $\gamma(\theta)$ and $\gamma\gamma$ -correlations, except as noted.

& Based on analysis of $\gamma(\theta)$ and $\gamma\gamma$ -correlations, in agreement with the assignment from ⁴⁶Ca(⁹Be,2pn γ) (1981Po07).

^a From Adopted Levels.

E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E _i (level)	J_i^π	E_f	\mathbf{J}_{f}^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}
277	5	8219.1	12+	7942.1	11^{+}	1345.0 [‡] 5	40	6242.1	10^{+}	4897.0	8+
383	7	3441.6	4-	3058.6	3-	1346 [‡]	6	5197.7	7-	3851.6	5-
410	0.4	3851.6	5-	3441.6	4-	1370	2	5197.7	7-	3827.6	5-
471	0.5	5197.7	7-	4726.7	$(5^{-}, 6^{+})$	1432	4	3441.6	4-	2009.6	4+
529	0.3	3827.6	5-	3298.6	6+	1488	6	6149.7	8-	4661.6	6-
553	0.4	3851.6	5-	3298.6	6+	1559	3	3568.9	3-	2009.6	4+
769	0.7	3827.6	5-	3058.6	3-	1598.5 5	53	4897.0	8+	3298.6	6+
793	1	3851.6	5-	3058.6	3-	1631	6	6828.9	9-	5197.7	7-
810	2	4661.6	6-	3851.6	5-	1700	9	7942.1	11^{+}	6242.1	10^{+}
889.0 5	100	889.0	2+	0.0	0^{+}	1725	1	5023.6		3298.6	6+
974	0.7	4415.6	(6 ⁻)	3441.6	4-	1734	1	6149.7	8-	4415.6	(6 ⁻)
1024	0.9	4322.6		3298.6	6+	1811	7	7960.7	10-	6149.7	8-
1049	9	3058.6	3-	2009.6	4+	1818 [‡]	1	3827.6	5-	2009.6	4+
1082	4	4523.6	$(4^+, 5, 6^-)$	3441.6	4-	1823	6	10042.1	12+	8219.1	12^{+}
1120.5 5	95	2009.6	4+	889.0	2^{+}	1842	7	3851.6	5-	2009.6	4+
1220‡	5	4661.6	6-	3441.6	4-	1887	3	8716.0	(11 ⁻)	6828.9	9-
1225	3	4523.6	$(4^+, 5, 6^-)$	3298.6	6+	1932	1	6828.9	9-	4897.0	8^{+}
1289.0 5	65	3298.6	6+	2009.6	4+	1977	11	8219.1	12+	6242.1	10^{+}
1304		6200.9	(7)	4897.0	8+	2043	1	8285.1	$(11, 12^+)$	6242.1	10^{+}

Continued on next page (footnotes at end of table)

12 C(40 Ca, $\alpha 2$ **p** γ) 1991Ca23 (continued)

 γ ⁽⁴⁶Ti) (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
2100	2	10042.1	12+	7942.1	11+
2279	1.2	3168.1	1-	889.0	2^{+}
2680	0.8	3568.9	3-	889.0	2+
2717	0.9	4726.7	$(5^{-},6^{+})$	2009.6	4+
2835	1.1	3724.1	(2^{+})	889.0	2^{+}
2902	0.3	6200.9	(7)	3298.6	6+

[†] E given with uncertainty are from 1976Fo22, others are from 1991Ca23.
[‡] Doublet.
[#] Relative Iγ measured in 1991Ca23.

Level Scheme

Intensities: Relative I_{γ}

¹² $C(^{40}Ca,\alpha 2p\gamma)$ 1991Ca23

$^{12}C(^{40}Ca,\alpha 2p\gamma)$ 1991Ca23

 $^{46}_{22}{
m Ti}_{24}$