⁴⁶Mn ε decay (36.2 ms) 2007Do17

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Balraj Singh	ENSDF	20-Feb-2010		

Parent: ⁴⁶Mn: E=0.0; $J^{\pi}=(4^+)$; $T_{1/2}=36.2 \text{ ms } 4$; $Q(\varepsilon)=17100 \text{ SY}$; $\%\varepsilon+\%\beta^+$ decay=100.0

⁴⁶Mn-Q(ε): 17100 110 (syst, 2009AuZZ, 2003Au03).

⁴⁶Mn-T_{1/2}: From 2007Do17. Others: 34.0 ms +45-35 (2001Gi01), 41 ms +7-6 (1992Bo37).

⁴⁶Mn-% ε +% β ⁺ decay: % ε p=57.0 8 (2007Do17). Other: 58 9 (2001Gi01).

2007Do17: ⁴⁶Mn produced in fragmentation of ⁵⁸Ni²⁶⁺ beam at 74.5 MeV/nucleon with natural Ni target at SISSE/LISE3 facility in GANIL. Fragment separator=ALPHA–LISE3. Fragment identification by energy loss, residual energy and time-of-flight measurements using two micro-channel plate (MCP) detectors and Si detectors. Double-sided silicon-strip detectors (DSSSD) and a thick Si(Li) detector were used to detect implanted events, charged particles and β particles. The γ rays were detected by four Ge detectors. Coincidences measured between charged particles and γ rays. T_{1/2} measured by time correlation of implantation events due to ⁴⁶Mn and subsequent emission of protons and γ rays. 2007Do17 and 2001Go01 are from the same group. Some of the results in 2007Do17 are an improved analysis of experiments reported in 2001Gi01.

2001Gi01 (also 2001Gi02): Ni(⁵⁸Ni,X) E=74.5 MeV/nucleon. Fragments selected by the ALPHA-LISE3 fragment separator with a Be degrader and Wien filter at GANIL. Ions implanted in a Si-detector telescope which measured ΔE , E, and position. With tof measurements, started both by the cyclotrons' high-frequency and a micro-channel plate detector before the Wien filter, implanted ions could be identified. The telescope was surrounded by Ge detectors to measure γ 's in the radioactive decay.

1992Bo37: delayed-proton energies from the 9236-keV level in 46 Cr measured with E- Δ E detector.

All data are from 2007Do17, unless otherwise stated.

⁴⁶Cr Levels

E(level)	\mathbf{J}^{π}	Comments			
0	0^{+}				
892.5 <i>3</i>	2+				
1987	(4^{+})				
9152 24	(4^{+})	T=2			
		E(level): from 2007Do17. From mass excess=-31879.6 170 for ⁴⁵ V g.s., observed E(p) branches from this level,			

and excitation energies of ⁴⁵V states, 2007Do17 obtain mass excess= $-20322 \ 14$ for IAS in ⁴⁶Cr, which gives excitation energy of 9152 24 using mass excess= $-29474 \ 20$ for ⁴⁶Cr. Other: 9240 60 (1992Bo37). Three proton branches from decay of this state have been identified (2007Do17,1992Bo37) with c.m. energies (absolute intensities): 3002 12 (7.0 7), 3494 25 (3.5 6), 4262 26 (6.8 8). Other proton groups are expected from this state since the predicted β^+ feeding of this state is $\approx 27\%$. Energetically, two-proton and α -decay modes are also possible but these are expected to be small (2007Do17). Additional information 1.

ε, β^+ radiations

E(decay)	E(level)	$I\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments
(7948 <i>SY</i>)	9152	27 CA	0.02 <i>CA</i>	3.3 CA	27 CA	 av Eβ=3258 56; εK=0.00080 4; εL=8.3×10⁻⁵ 5; εM+=1.44×10⁻⁵ 8 Log <i>ft</i>: measured branch of 17.3% gives log <i>ft</i>=3.5, a superallowed type of transition consistent with 9152 state in ⁴⁶Cr as IAS of ⁴⁶Mn g.s. I(ε+β⁺): predicted value according to 2007Do17 is 27%, but only 17.3% <i>12</i> is definitely assigned from measured proton groups. 1992Bo37 give predicted value of 32 6 based on pure Fermi transition and measured half-life of ⁴⁶Mn g.s.
† Absolu	te intensity	per 100 d	lecavs.			

Absolute intensity per 100 decays.

⁴⁶Mn ε decay (36.2 ms) 2007Do17 (continued)

 $\gamma(^{46}\mathrm{Cr})$

I γ normalization: Absolute intensities (per 100 decays of ⁴⁶Mn) are given by 2007Do17.

Eγ	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}
^x 796.1 [†] 2 892.5 3 1094.7 4	1.6 <i>4</i> 25 6 26 7	892.5 1987	2 ⁺ (4 ⁺)	0 892.5	0^+ 2 ⁺
x1118.01 15	1.5 10				

[†] Unplaced γ is in either ⁴⁶Cr from ε decay or in ⁴⁵V from ε p decay. An unplaced 739.7 γ probably belongs in the latter decay mode since it is seen in coin with a 475.2 γ in ⁴⁵V.

 ‡ Absolute intensity per 100 decays.

 $x \gamma$ ray not placed in level scheme.

⁴⁶Mn ε decay (36.2 ms) 2007Do17

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

	$I_{\gamma} < 2\% \times I_{\gamma}^{max}$
	$I_{\gamma} < 10\% \times I_{\gamma}^{max}$
	$I_{\gamma} > 10\% \times I_{\gamma}^{max}$
•	Coincidence

⁴⁶₂₄Cr₂₂