Adopted Levels, Gammas

	Hi	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	ENSDF	20-Feb-2010

 $Q(\beta^{-}) = -1.65 \times 10^{4} \text{ syst}; S(n) = 1.803 \times 10^{4} \text{ 4}; S(p) = 4882 22; Q(\alpha) = -6794 20$ 2012Wa38

Note: Current evaluation has used the following Q record -17100 syst 18.58E350 4883 26 -6777 21 2009AuZZ,2003Au03.

Estimated uncertainty=110 for Q(β^-) (2009AuZZ,2003Au03).

Q(\varepsylon p)=2243 20 (2009AuZZ,2003Au03).

Mass excess=-29.472 20 MeV (1992Bo37).

1972Zi02: identification and production of ${}^{46}Cr$ in ${}^{32}S({}^{16}O,2n)$ reaction.

1991Wi13: ⁴⁶Ti(π^+,π^-) E=450 MeV, measured cross section for double isobaric analog state using LAMPF facility and Large Acceptance spectrometer (las). Measured $d\sigma/d\Omega=0.25 \ \mu$ b/sr 10 at 5°.

1990We05: ⁴⁶Ti(π^+,π^-) E=33.9 MeV, measured cross section and $\sigma(\theta)$ for double isobaric analog state using LAMPF facility, Measured $d\sigma/d\Omega$ =3.1 µb/sr 8 at 0° and 2.5 µb/sr 6 at 25.1°.

1994B110: ⁹Be(⁵⁸Ni,X) E=650 MeV/nucleon, Fragment separator FRS at GSI facility, measured cross section for the production of ⁴⁶Cr.

2005On03: measured half-life of ⁴⁶Cr g.s.

Structure calculations using shell model: 2008Ma44, 2007He32, 2002Ca48: levels, B(E2), mirror states, etc.

⁴⁶Cr Levels

Cross Reference (XREF) Flags

A 46 Mn ε decay (36.2 ms)

B 47 Fe ε p decay (21.9 ms)

C ${}^{12}C({}^{36}Ar,2n\gamma)$

D Coulomb excitation

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0#	0+	0.26 s 6	ABCD	%ε+%β ⁺ =100 T _{1/2} : from 1972Zi02, timing of β decays. Other: 0.24 s <i>14</i> (2005On03) from β(993γ) coin decay curve. Additional information 1.
892.16 [#] 10	2+	5.4 ps 12	ABCD	J^{π} : level is Coulomb excited. T _{1/2} : from B(E2)=0.093 20 (2005Ya26) in Coulomb excitation.
1987.1 [#] 3	(4^{+})		ABC	
3196.5 [@] 6	(3 ⁻)		BC	
3226.9 [#] 6 3296 3 3494 3 7	(6 ⁺)		C C	
3593.7 [@] 7 3682.2 <i>16</i> 3715.8 <i>9</i> 3778 1 <i>12</i>	(4-)			
3986.7 [@] 7 4235 3 4305.5 12 4434.4 10	(5 ⁻)		C C C C	
4817.4 [#] 8	(8^+)		С	
4830 [@] 3 5117 4	(6 ⁻)		C C	
5346 [@] 3	(7 ⁻)		С	

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁴⁶Cr Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments				
6179.5 [#] 11	(10 ⁺)	С					
8162.5? [#] 15	(12^{+})	С					
9152 24	(4^{+})	Α	T=2				
			 E(level): from 2007Do17, see detailed comment in ⁴⁶Mn ε decay. J^π: T=2 quadruplet in ⁴⁶Sc (g.s.,4⁺), ⁴⁶Ti (9168,4⁺, probable IAS of ⁴⁶Sc g.s.), ⁴⁶Cr (9152 state) and ⁴⁶Mn (g.s.). Superallowed type β⁺ decay (log <i>ft</i>≈3.4) from ⁴⁶Mn g.s. to the 9152 level of ⁴⁶Cr is consistent with this interpretation. Also mirror analogy with 9168, 4⁺ state of ⁴⁶Ti. This state decays mainly by proton emission, but only 17.3% <i>12</i> branch is so far accounted in measurements of 2007Do17 and 1992Bo37. Energetically, two-proton and α-decay modes are also possible but these are expected to be small (2007Do17). 				

[†] From least-squares fit to $E\gamma$'s. [‡] As proposed in 2007Ga03 based on $\gamma(\theta)$ data for selected transitions observed in ${}^{12}C({}^{36}Ar,2n\gamma)$ and mirror analogy with ${}^{46}Ti$ and ⁴⁶V. [#] Band(A): Yrast (T=1) band. Structure is similar to T=1 states in mirror nuclide ⁴⁶Ti and ⁴⁶V. [@] Band(B): ΔJ =1 band based on (3⁻).

$\gamma(^{46}\mathrm{Cr})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.		Comments
892.16	2^{+}	892.15 [‡] 10	100	0.0	0^{+}	[E2]	B(E2)(W.u.)=19 4	
1987.1	(4^{+})	1094.9 [‡] <i>3</i>	100	892.16	2+			
3196.5	(3 ⁻)	2304.6 7	100	892.16	2+	D [#]		
3226.9 3296 3494.3	(6 ⁺)	1239.9 <i>5</i> 2404 <i>3</i> 1506.9 8	100 100 100	1987.1 892.16 1987.1	(4^+) 2^+ (4^+)	Q [#]		
3593.7	(4 ⁻)	397.4 6 1605.3 <i>15</i>	100 <i>13</i> 75 <i>19</i>	3196.5 1987.1	(3 ⁻) (4 ⁺)	D [#]		
3682.2 3715.8 3778.1		1695.0 <i>15</i> 519.3 6 581.7 <i>11</i> 1790 <i>3</i>	100 100 50 <i>30</i> 100 <i>60</i>	1987.1 3196.5 3196.5 1987.1	(4^+) (3 ⁻) (3 ⁻) (4 ⁺)			
3986.7	(5 ⁻)	393.0 <i>15</i> 492.3 <i>7</i> 760.3 <i>10</i>	12 7 60 <i>11</i> 43 <i>13</i>	3593.7 3494.3 3226.9	(4 ⁻) (6 ⁺)			
4235 4305.5 4434.4		790.1 8 2248 <i>3</i> 711.8 <i>9</i> 841.0 <i>22</i> 1207.4 <i>9</i>	100 22 100 100 22 13 100 17	3196.5 1987.1 3593.7 3593.7 3226.9	(3^{-}) (4^{+}) (4^{-}) (4^{-}) (6^{+})	Q [#]		
4817.4 4830 5117	(8 ⁺) (6 ⁻)	1590.4 6 1236 3 1401 3	100 100 100	3226.9 3593.7 3715.8	(6 ⁺) (4 ⁻)			
5346 6179.5	(7 ⁻) (10 ⁺)	1359 <i>3</i> 1362.1 <i>7</i>	100 100	3986.7 4817.4	(5 ⁻) (8 ⁺)			
8162.5?	(12^{+})	1983.0 [@] 10	100	6179.5	(10^{+})			

[†] From ${}^{12}C({}^{36}Ar,2n\gamma)$, unless otherwise stated.

Adopted Levels, Gammas (continued)

$\gamma(^{46}Cr)$ (continued)

[‡] Weighted average of values from ε decay, ε p decay and ${}^{12}C({}^{36}Ar,2n\gamma)$. [#] The $\gamma(\theta)$ patterns in ${}^{12}C({}^{36}Ar,2n\gamma)$ are consistent with $\Delta J=2$, quadrupole for 1240 γ and 790 γ ; and $\Delta J=1$ for 2305 γ and 397 γ . [@] Placement of transition in the level scheme is uncertain.

 $^{46}_{24}{
m Cr}_{22}$

Adopted Levels, Gammas

 $^{46}_{24}{
m Cr}_{22}$