Adopted Levels, Gammas

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	T. W. Burrows	NDS 109,171 (2008)	30-Oct-2007				
$=1.584\times10^4$ 19; S(p)	$=1621 \ 8; \ Q(\alpha)=-$	-5663 8 2012Wa38					

 $Q(\beta^{-})=-1.237 \times 10^{4} 4$; $S(n)=1.584 \times 10^{4} 19$; S(p)=1621 8; $Q(\alpha)=-5663 8 2012Wa38$ Note: Current evaluation has used the following Q record $-1.291E4 501.583e^{+}4121620 17 -5622 17 2003Au03$. All data are from ${}^{24}Mg({}^{24}Mg,p2n\gamma)$, except as noted.

⁴⁵V Levels

E(B),J(D) 56.4-57.2 doublet deduced on basis of two $T_{1/2}$'s associated with 56.4 γ and a detailed analysis of the $\gamma\gamma(t)$ spectra showing two gammas with E γ =329.7 and E γ =328.9, respectively, in (⁷Li,2n γ). $\pi(56.7)=\pi(56.8)$ from mult(0.8 γ).

Cross Reference (XREF) Flags

				A 45 Cr β^+ decay: partial B 46 Mn β^+ p decay: partial C 24 Mg(24 Mg,p2n γ) E=83 MeV D 40 Ca(7 Li,2n γ)
E(level)	$J^{\pi^{\dagger}}$	T _{1/2} ‡	XREF	Comments
0.0 [#]	7/2-	547 ms 6	ABCD	 %ε+%β⁺=100 J^π: from log <i>ft</i>=3.6 to 7/2⁻. μ: 2001Bu02 predict μ=3.63 4 or 3.83 4 based on linear correlations between g.s. gyromagnetic ratios and superallowed β-decay transition strengths of mirror nuclei and shell model calculations.
56.7 5	$(5/2^{-})$	≤4.2 ns	BCD	
56.8 6	$(3/2^{-})$	0.43 µs 8	BCD	
385.9 [@] 5	$(3/2^+)$		BCD	Peak at ≈ 390 in 50 Cr(p, ⁶ He) spectra not discussed by 1975Mu09 (E=46 MeV, θ =10.6°. Mag spect; pc, scin).
797.2 <mark>&</mark> 5	$(5/2^+)$		BCD	
1272.2 [@] 4	$(7/2^+)$		BCD	
1324.0 ^{<i>a</i>} 5	$(9/2^{-})$		ABC	
1462.0 [#] 5	$(11/2^{-})$		С	
1916.5 <mark>&</mark> 6	$(9/2^+)$		С	
2489.1 [@] 6	$(11/2^+)$		С	
2626.3 ^{<i>a</i>} 6	$(13/2^{-})$		C	
3004.4 [#] 6	$(15/2^{-})$		С	
3444.6 ^{&} 12	$(13/2^+)$		С	
3604.5 ^a 7	$(17/2^{-})$		С	
3910.2 [@] 12	$(15/2^+)$		С	
4391.7 [#] 7	$(19/2^{-})$		С	
4800 53	(7/2 ⁻)		A	%p≈100 T=(3/2)
				E(level): from E(p)(c.m.)=2.10 MeV 5 to ⁴⁴ Ti 1082.99 9 state in ⁴⁵ Cr β^+ p decay and S(p)(⁴⁵ V)=1617 17. Other: 4803 28 from Coulomb energy prediction for the mass of the ⁴⁵ V analog state. J ^{π} ,T: identified as the T _z =+1/2 member of J ^{π} =7/2 ⁻ , T _{1/2} =3/2 quadruplet (⁴⁵ Sc g.s. parent); see ⁴⁵ Cr β^+ decay.
5685.7 [@] 14	$(19/2^+)$		С	

Adopted Levels, Gammas (continued)

⁴⁵V Levels (continued)

E(level)	$J^{\pi T}$	XREF	
6206.6 [#] 11	$(23/2^{-})$	С	
7159.5 [#] 11	$(27/2^{-})$	С	

[†] From similarity to ⁴⁵Ti, except for g.s.. See also the footnote on J^{π} in (⁷Li,2n γ).

[‡] Ground-state $T_{1/2}$ from 1988HaZB (⁴⁶V(p,2n); ms, chopper, tape; β^+ , scin); others: 539 ms *18* (1982Ho11. ⁴⁰Ca(⁷Li,2n); He-jet; 40.1 γ), 0.61 s *8* (1982AlZP. ⁴⁰Ca(⁷Li,2n); He-jet; 40.1 γ), and 410 ms *50* (1980GrZY. ⁴⁰Ca(⁶Li,n); pulsed beam). Excited-state $T_{1/2}$'s from $\gamma\gamma$ (t) or n γ (t) in (⁷Li,2n γ).

[#] Band(A): Band based on $f_{7/2}$ orbital, $\alpha = -1/2$ (2006Be07).

[@] Band(B): Band based on $d_{3/2}$ orbital, $\alpha = -1/2$ (2006Be07). 386, 797, an 1272 members of this band identified as possible members of a quasi-rotational band by 1980Gr04 based on a similar behavior to bands in ⁴³Sc, ⁴³Ti, and ⁴⁵Ti.

& Band(C): Band based on $d_{3/2}$ orbital, $\alpha = +1/2$ (2006Be07).

^{*a*} Band(D): Band based on $f_{7/2}$ orbital, $\alpha = +1/2$ (2006Be07).

$\gamma(^{45}V)$

See β^+ p decay for unplaced gammas.

Eγ	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	α^{g}	$I_{(\gamma+ce)}$ ‡	Comments
(0.8 ^{&})		56.8	$(3/2^{-})$	56.7	$(5/2^{-})$	M1,E2 ^a	2876 ^b	≈120 ^{&}	
54.9 [#] 9		56.7	(5/2 ⁻)	0.0	7/2-	(M1) [@]	0.111 6	100 &	ce(K)/(γ +ce)=0.090 4; ce(L)/(γ +ce)=0.0086 5; ce(M)/(γ +ce)=0.00113 6; ce(N+)/(γ +ce)=5.7×10 ⁻⁵ 3 ce(N)/(γ +ce)=5.7×10 ⁻⁵ 3 R(M1)(W u)>0.027
57.1 ^{&} 8		56.8	(3/2 ⁻)	0.0	7/2-	(E2) ^C	3.33 20	100 ^{&}	$ce(K)/(\gamma+ce)=0.685 \ 19;ce(L)/(\gamma+ce)=0.074 \ 6;ce(M)/(\gamma+ce)=0.0095 \ 7;ce(N+)/(\gamma+ce)=0.00039 \ 3ce(N)/(\gamma+ce)=0.00039 \ 3B(E2)(W.u.)=24 \ 9$
329.1 ^{hd} 2	100 ^{hd} 19	385.9	$(3/2^+)$	56.8	(3/2 ⁻)				
329.1 ^{hd} 2	100 ^{hd} 19	385.9	$(3/2^+)$	56.7	$(5/2^{-})$				
378.0 <i>3</i>	38 11	3004.4	$(15/2^{-})$	2626.3	$(13/2^{-})$				
410.9 <i>4</i>	100 26	797.2	$(5/2^+)$	385.9	$(3/2^+)$				
465 ¹ 1	<15	3910.2	$(15/2^+)$	3444.6	$(13/2^+)$				
475.02 ^e 24	49 ^{<i>f</i>} 15	1272.2	$(7/2^+)$	797.2	$(5/2^+)$				
572.7 8	42 6	2489.1	$(11/2^+)$	1916.5	$(9/2^+)$				
600.1 2	100 6	3604.5	$(17/2^{-})$	3004.4	$(15/2^{-})$				
644.0 /	38 16	1916.5	(9/2+)	1272.2	$(1/2^{+})$				
740.9 ^{na} 6	63 ^{na} 12	797.2	$(5/2^+)$	56.8	$(3/2^{-})$				
740.9 nd 6	63 nd 12	797.2	$(5/2^+)$	56.7	$(5/2^{-})$				
787.2 3	100	4391.7	$(19/2^{-})$	3604.5	$(17/2^{-})$				
885.90 ^e 41	63 J 20	1272.2	$(7/2^+)$	385.9	$(3/2^+)$				
952.9 3		/159.5	$(27/2^{-})$	6206.6	$(23/2^{-})$				
955' <i>1</i>	<100	3444.6	$(13/2^+)$	2489.1	$(11/2^+)$				
978.05	<5	3604.5	$(1^{\prime}/2^{-})$	2626.3	$(13/2^{-})$				

Continued on next page (footnotes at end of table)

 ${}^{45}_{23}V_{22}-2$

Adopted Levels, Gammas (continued)

 $\gamma(^{45}V)$ (continued)

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π
1119.5 4	100 16	1916.5	$(9/2^+)$	797.2	$(5/2^+)$
1163.9 5	100 18	2626.3	$(13/2^{-})$	1462.0	$(11/2^{-})$
1216.9 4	100 11	2489.1	$(11/2^+)$	1272.2	$(7/2^+)$
1272.6^{f} 5	100 ^{<i>f</i>} 15	1272.2	$(7/2^+)$	0.0	$7/2^{-}$
1302.0 ⁱ 5	29 6	2626.3	$(13/2^{-})$	1324.0	$(9/2^{-})$
1322.8 [#] 5	100	1324.0	$(9/2^{-})$	0.0	7/2-
1421 <i>I</i>	100 10	3910.2	$(15/2^+)$	2489.1	$(11/2^+)$
1462.0 5	100	1462.0	$(11/2^{-})$	0.0	$7/2^{-}$
1528 <i>I</i>	<100	3444.6	$(13/2^+)$	1916.5	$(9/2^+)$
1542.6 4	100 14	3004.4	$(15/2^{-})$	1462.0	$(11/2^{-})$
1775.5 7		5685.7	$(19/2^+)$	3910.2	$(15/2^+)$
1814.9 8		6206.6	$(23/2^{-})$	4391.7	$(19/2^{-})$

 † Relative branching ratio from each level.

[‡] Relative I(γ +ce) branching ratio from each level.

[#] Weighted ave (ext.) of 54.4 keV 5 from β^+ p decay and 56.3 keV 8 from (⁷Li,2n γ) and of 1322.7 keV 3 from β^+ decay, 1322.7 keV 5 from β^+ p decay, and 1324.0 keV 5 from (²⁴Mg,p2n γ).

[@] D from comparison to RUL. M1 from the level scheme.

& From (⁷Li, $2n\gamma$).

^a From comparison to RUL.

^b From 1980Gr04 (M1 assumed. Code of 1975Pa26 used by 1980Gr04 to calculate α).

^{*c*} D,E2 from comparison to RUL. ΔJ^{π} =2,no from the level scheme.

^d The doublets at 329.1 and 740.9 were not resolved in (²⁴Mg,p2n γ); 2006Be07 assign average γ -ray energy and equal intensity. Other: 328.9 and 329.7 and unresolved 740 in (⁷Li,2n γ).

^{*e*} Weighted ave (int.) of 455.2 keV 3 from β^+ p decay and 474.7 keV 4 from (²⁴Mg,p2n γ) and of 885.7 7 from β^+ p decay and 886.0 keV 5 from (²⁴Mg,p2n γ).

^{*f*} From β^+ p decay.

^g Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^h Multiply placed with intensity suitably divided.

^{*i*} Placement of transition in the level scheme is uncertain.

3

 ${}^{45}_{23}\mathrm{V}_{22}$

4

Adopted Levels, Gammas

 ${}^{45}_{23}\mathrm{V}_{22}$