		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	T. W. Burrows	NDS 109,171 (2008)	30-Oct-2007

 $Q(\beta^{-})=-2062.1 5$; S(n)=11326.5 19; S(p)=6891.5 8; $Q(\alpha)=-7936.5 8 2012Wa38$ Note: Current evaluation has used the following Q record \$-2062.1 5 11323.0 196888.3 8 -7933.6 8 2003Au03.Others: see 1992Bu01.

⁴⁵Sc Levels

Proton resonance parameters: see ${}^{44}Ca(p,p),(p,p'\gamma),(p,\gamma)$ res.

Isobaric analog states which contain no information pertinent to the bound states of A=45 have not been included in this evaluation. See 1983Bu21.

J(S),T(T) See discussion in 1992Bu01 on what may Be considerable discrepancies in the experimental data as to the existence and γ deexcitation patterns and resultant T_{1/2}'s of these two states.

Cross Reference (XREF) Flags

A ${}^{45}\text{Ti }\varepsilon \text{ decay}$ B ${}^{28}\text{Si}({}^{19}\text{F},2p\gamma), {}^{30}\text{Si}({}^{18}\text{O},p2n\gamma),$ C ${}^{30}\text{Si}({}^{18}\text{O},p2n\gamma)$ D ${}^{42}\text{Ca}(\alpha,p)$ E ${}^{42}\text{Ca}(\alpha,p\gamma)$ F ${}^{43}\text{Ca}({}^{3}\text{He},p)$ G ${}^{44}\text{Ca}(\alpha,p),(p,p'\gamma),(p,\gamma) \text{ res}$ H ${}^{44}\text{Ca}({}^{3}\text{He},d),(\text{pol }{}^{3}\text{He},d)$ I ${}^{45}\text{Sc}(\gamma,\gamma),(\gamma,\gamma') \text{ res}$	J K L M N O P Q R	⁴⁵ Sc(n,n'),(n,n'γ) ⁴⁵ Sc(p,p'),(d,d') ⁴⁵ Sc(p,p'γ) Coulomb excitation ⁴⁶ Ti(d, ³ He) ⁴⁸ Ti(pol p,α) E=79.2 MeV I(γ+ce)(μ^- ,xnγ) ⁴⁵ Ca β^- decay Muonic atom	S T V W X Y Z	²⁷ Al(¹⁸ O,X γ), ⁴⁵ Sc(γ ,n),(γ ,p) ⁴⁵ Sc IT decay (325.8 ms) ⁴⁴ Ca(¹⁶ O, ¹⁵ N) ⁴⁵ Sc(e ⁺ ,X γ) ⁴⁵ Sc(³ He, ³ He γ) E=38 MeV ⁴⁷ Ti(d, α) ⁴⁸ Ti(p, α) E=10,12 MeV ⁴⁸ Ti(p, α) E=40.35 MeV
--	---	---	---------------------------------	---

E(E) TV Excitation energy is an average of the following data:

Adopted	ε Decay		$(\alpha, p\gamma)$	(p,	γ)		ing uu	(γ,γ)		(p,]	p'γ)	
376.50 12	376.1	5	376.8 3	376.5	2		-				376.4 1 3	76.58 33
TVWeighted												
720.12 14	719.6	3	720.6 5	720.1	2	720.2	1		720.0	10	720.34 15	
TVUnweighted												
939.24 15			939.5 5	938.9 <i>2</i>		939.1 1					939.5 5	TVUnweighted
1067.6 4			1068.6 10	1067.2 3	1	067.2 2					1067.6 5	TVUnweighted
1236.70 25	1236.4	5	1237.5 5	1235.8		6 1236.4	2		1237.0	20	1237.09 18	
TVUnweighted												
1303.18 15			1303.5 5	1303.1 <i>3</i>	1	303.2 <i>2</i>					1302.9 5	TVWeighted
1408.87 20	1408.1	3	1409.5 5	1408.5	3	1409.0	2		1409.0	10	1409.1 4	
TVUnweighted												
1556.2 5			1557.1 10	1555.1 <i>2</i>	1	556.3 <i>3</i>			1556.4	3		TVUnweighted
1662.0 4	1661.0	3	1662.0 5		1	661.5 5			1663.0	20	1662.5 5	
TVUnweighted												
1800.0 5			1800.7 10	1800.0 5	1	800.6 3			1798.0	20	1800.2 5	
TVUnweighted												
2030.2 7			2031.6 5	2028.6 <i>8</i>	2	029.6 3					2030.9 5	TVUnweighted
2093.0 5			2092.3 10	2092.2 4	2	092.2 5			2093.1	20	2094.9 10	
TVUnweighted												
2341.0 4				234	1.2	5 23	41.1 2	0	2340.8	6	TVWeighted	l
T(G) T	/ The ha	lf-	life is a weig	hted avera	ge o	f the fo	llowing	g d	ata:			
E _x ($(\alpha, \mathbf{p}\gamma)$		(γ, γ)	$(\mathbf{p}, \mathbf{p}' \gamma)$	Cou]	. ex.	-	-				
DSAM	1 (ps)	(m	eV) DSAM (ps) BE λ	↑ (p	s)						
543 6 4 +4	17-23	0	086 24 4	5 10		609						
JIJ 0.4 74	17 23	υ.	6 9 +23-	16		0.0 9						
1068 0.35 -	+12-8		0.76	35							0.76 ps 35	excluded

0.22	+7-5
0.38	+14 - 9

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	T(J) E _x	TV The $(\alpha, p\gamma)$	half-life : (γ, γ)	is an unweigh $(p,p'\gamma)$	ted average	oft E _x	the following $(\alpha, p\gamma)$	ing data)	: (p,γ)	(γ, γ)	(n,n'	γ)
$\begin{array}{c crsc} & D_{SAR} & D_$	$(p,p'\gamma)$			-	_	~			-			
$ \begin{array}{c} \frac{(p_3)}{974} & 2.6 \pm 6-5 & 0.233 & 30 & 2.1 \pm 5-4 & 1800 & 0.11 & 4 & 66 \pm 63-35 & 20 & 6 & 45 & 7 \\ \frac{9.76}{9.76} + 12-7 & 3.2 \pm 4-5 & 2031 & 1.1 \pm 6-3 & 0.66 & 25 & 0.262 & 11 \\ 0.660 & 11 & 2.4 \pm 5 & 2031 & 1.1 \pm 6-3 & 0.66 & 25 & 0.262 & 11 \\ 0.109 \pm 20-15 & 0.660 & 11 & 0.466 & 11 & 0.662 & 11 & 0.636 & 12 & 0.626 & 11 \\ 0.109 \pm 20-15 & 0.103 & 0.615 & 10 & 0.636 & 12 & 0.626 & 11 & 0.636 & 12 & 0.662 & 12 & 0.662 & 12 & 0.662 & 12 & 0.662 & 12 & 0.662 & 12 & 0.662 & 12 & 0.636 & 12 & 0.662 & 12 & 0.662 & 12 & 0.636 & 12 & 0.636 & 12 & 0.662 & 12 & 0.636 & 12 & 0.636 & 12 & 0.636 & 12 & 0.636 & 12 & 0.636 & 12 & 0.636 & 12 & 0.636 & 12 & 0.636 & 12 & 0.636 & 12 & 0.636 & 12 & 0.636 & 12 & 0.636 & 12 & 0.626 & 11 & 0.636 & 12 & 0.626 & 11 & 0.636 & 12 & 0.626 & 11 & 0.636 & 12 & 0.626 & 12 & 0.636 & 12 & 0.626 & $	D	SAM (ps)	(meV)	DSAM (ps)	D	SAM	DSAM (p	s)	(fs)	DSAM (meV)	DSAM (fs)	_
974 2.6 4-6-5 0.233 2.1 +5-4 1800 0.11 4 66 + 63-35 20 6 45 7 0.476 +12-7 3.2 x-8-5 2031 1.1 +6-2 0.37 19 1662 5.0 6 0.076 21 0.466 11 0.625 0.9256 12 6161 0.103 8 0.103 8 0.103 0.025 12 0.025 11 0.026 11 0.025 11 0.025 11 0.025 11 0.025 11 0.025 11 0.025 11 0.025 11 0.025 11 0.025 11 0.025 11 0.025 11 0.025 11 0.025 11	(ps)											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	974 2.6 0.076 +12-	+6-5 -7	0.233 30	2.1 +5-4		1800	0 0.11 4		66 +63-3	5 2	20 6	45 7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1000	-	3.2	+8-5	2031	1.1	+6-3				0 66 05	0.37 19
$\frac{1}{2} \frac{1}{2} \frac{1}$	1662	5.		0.076 21 80 11	2341	0 04	6 11				0.66 25	0 026 11
E(W) TV Excitation energy is an average of the following data: Adopted $\binom{2^{1}\text{He}, \text{p}}{2^{1}\text{He}, \text{d}}$ $\binom{2^{1}\text{He}, \text{d}}{2^{1}\text{Pe}, \text{p}}$ $\binom{2^{1}\text{He}, \text{d}}{2^{1}\text{He}, \text{p}}$ $\binom{2^{1}\text{He}, \text{d}}{2^{1}\text{He}, \text{d}}$ $\frac{\pm 15}{2^{13}}$ $\frac{\pm 15}{3189}$ $\frac{\pm 15}{3181}$ $\frac{1}{3882}$ $\frac{1}{11}$ $\frac{3206}{32}$ $\frac{7}{3290}$ $\frac{3247}{3292}$ $\frac{7}{3290}$ $\frac{3247}{3292}$ $\frac{7}{10}$ $\frac{1}{10000000000000000000000000000000000$			0.10 0.10	90 +20-15 93 8	2311	0.01	0 11			0. 0.	015 <i>10</i> 036 <i>12</i>	0.020 11
$\begin{array}{c} \operatorname{Adopted} \left({}^{2}\operatorname{He}, p \right) \left({}^{2}\operatorname{He}, d \right) & (p, p') & \operatorname{Adopted} \left({}^{2}\operatorname{He}, p \right) \left({}^{2}\operatorname{He}, d \right) \\ \begin{array}{c} \pm 15 & \pm 15 \\ \pm 15 & \pm 15 \\ \hline 3188 & 9 \\ \hline 3283 & 7 \\ \hline 3383 & 3467 \\ \hline 3382 & 7 \\ \hline 3382 & 7 \\ \hline 3389 & 3287 & 7 \\ \hline Weighted \\ \hline 4424 & 11 \\ 4424 & 4424 \\ \hline 4493 \\ \hline 4034 & 4034 \\ 4493 \\ \hline 4178 & 11 \\ 4476 & 4179 \\ \hline 4178 & 11 \\ 4476 & 4179 \\ \hline 4178 & 11 \\ 4476 & 4179 \\ \hline 4178 & 11 \\ 4476 & 4179 \\ \hline 4178 & 11 \\ 4476 & 4179 \\ \hline 4178 & 11 \\ 4476 & 4179 \\ \hline 4178 & 11 \\ 4476 & 4179 \\ \hline 4178 & 11 \\ 4476 & 4179 \\ \hline 4178 & 11 \\ 4476 & 4179 \\ \hline 4178 & 11 \\ 4476 & 4179 \\ \hline 4178 & 11 \\ 4476 & 4179 \\ \hline 4178 & 11 \\ 4476 & 4179 \\ \hline 4178 & 11 \\ 4476 & 4179 \\ \hline 418 & 411 \\ 4424 & 414 \\ 4449 \\ \hline 419 & 4299 & 30 \\ \hline Weighted \\ 6512 & 5661 \\ 5661 & 5684 & 20 \\ \hline 6438 & 12 \\ 72 \\ 77 \\ 77 \\ 77 \\ 77 \\ 77 \\ 77 \\$	E(W)	TV Exc	itation ene	rgv is an ave	rage of the	foll	owing data	a:				
$\frac{3198}{2283} \frac{9}{7} \frac{3299}{3290} \frac{3189}{3281} \frac{3206}{7} \frac{7}{7} \frac{10}{10} \frac{10}{10} \frac{10}{10} \frac{4622}{11} \frac{4660}{4624} \frac{4624}{11} \frac{4622}{4826} \frac{4626}{15} \frac{15}{10} \frac{10}{10} \frac$	Adopted	(³ Не,р) ±15	(³ He,d) ±15	(p,p')			Adopted	(³ H	le,p)	(³ He,0	l) ±15	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3198 <i>9</i>		3189	3206 7	Unweighted		4662 11	4660	4664	15	Weighte	
3400 8 3407 3392 7 Unweighted 4919 11 4920 4917 15 Weighted 3882 7 3881 3914 7 Weighted 5261 11 5268 5254 15 Weighted 4034 11 4034 4034 Weighted 5299 11 5288 5309 15 Weighted 4376 13 4399 4244 11 4240 4249 Weighted 619 17 6102 613 620 Unweighted 4367 13 4399 39 Weighted 6321 13 6344 6319 20 Unweighted 4367 13 4399 4299 30 Weighted 6332 13 6344 6319 20 Unweighted 4566 11 4542 4549 Weighted 6332 13 6344 6619 20 Weighted E(level) [†] $7^{4.7}$ T _{1/2} # XREF Comments $\mu=+4.756487 2 (2005824, 1969Lu01, 1951Pr02)$ $0.0^{@}$ $7/2^{-7}$ stable ABCDEFGHIJKLMNOPQ TU <yz< td=""> $\mu=+0.366 5 (20056147); 0=-0.318 22 (200647)$ $12.40^{& & d} 5 3/2^{+}$ 325.8 ms 42 ABC E GHIJKLMNOPQ T Y Y π^{H-100} $\mu=-0.366 5 (20066147); 0=-0.318 22 (2000647)$ $r^{-1}: 1/2^{-1}: mon 1/2^{-1}:$</yz<>	3283 7	3290)	3281 7	Weighted		4824 11	4822	4826	15	Weighte	d
$\frac{3962}{982} = \frac{11}{982} = \frac{3963}{983} = \frac{3914}{983} = \frac{1}{977} = \frac{3914}{983} = \frac{11}{12} = \frac{3976}{12} = \frac{3976}{12} = \frac{3976}{12} = \frac{3976}{12} = \frac{3976}{12} = \frac{3976}{12} = \frac{3977}{12} = \frac$	3400 8	2002	3407	3392 7	Unweighted		4919 11	4920	4917	15	Weighte	d J
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3882 11	3883	3080	3914 / 3075 7	Weighted		4965 II 5261 11	4970	4959	15 15	Weighte	1
4176 1179 Weighted 5669 12 5661 5684 20 Weighted 4307 13 4309 4299 30 Weighted 6332 13 6344 6319 20 Unweighted 4546 11 4561 14 6519 12 5611 5642 20 Unweighted 4546 11 4561 4519 Weighted 6332 13 6344 6319 20 Unweighted 4610 11 4601 4619 Weighted 6438 12 6441 6434 20 Weighted 6100 $p^{r_1^2}$ T _{1/2} # XREF Comments $\mu = 4.756487 2 (20055(24, 1969Lu01, 1951Pr02) (2 - 0.22 / (20053(24, 1976Eu06)) (17, 1971Er63), \pi=- from L(^3He, d)=3. \mu : NNR, ^2H standard. Q: ABLDF; no pol correction. Others: -0.216.9 12.40& & data 5 3/2* 325.8 ms 42 ABC E GHIJKLMNOPQ T V YZ \pi \pi 12.40& & data 5 3/2* 325.8 ms 42 ABC E GHIJKLMNOPQ T V YZ \pi \pi 12.40& & data 5<$	4034 11	4034	4034	We	ighted	529	9 11	5288	5309 15	We	ighted	4
4244 11 4249 Weighted 6119 17 6102 6136 20 Unweighted 4307 13 4399 4299 30 Weighted 6438 12 6441 6434 20 Weighted 4546 11 4542 4549 Weighted 6438 12 6441 6434 20 Weighted 4610 11 4661 4619 Weighted 6438 12 6441 6434 20 Weighted $0.0^{(0)}$ $7/2^-$ stable ABCDEFGHIJKLMNOPQ TUV XYZ $\mu=+4.756487 2 (2005524,1976Er01)$ $\mu=-4.756487 2 (2005524,1976Er01)$ $p=-0.22 l / (2005524,1976Er01)$ $p^-1 = 17/2$ from AB (1976Fu06, 1959Fr53). $\pi=-$ from $L(^3He,d)=3$. $\mu: NMR$ ¹ 2H standard. $p: NMR$ ¹ 2H standard. $(2, ABLDF; no pol correction. Others: -0.216 9 (1971Ch25, AB), -0.220 2 (2006647); p-0.318 22 (2006647) p0.326 2 (2006647); p-0.318 22 (2006647) F: L(^4He,d)=2; D.E2 \gamma from 1/2^- TAR. T_{1/2}: mean lifetime r=0.470 s \delta from timing of K x-rays in Coulomb excitation (1967BH14). Authors of 1967BH14. Natures of $	4178 11	4176	4179	We	ighted	566	59 <i>12</i>	5661	5684 20	We	eighted	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4244 11	4240	4249	We	ighted	611	l9 17	6102	6136 20	Ur	weighted	
$\frac{1}{2} + \frac{1}{2} + \frac{1}$	4307 13	1510	4309	4299 30 Wo	Weighted	643	6332 13	6344	6319	20 Wc	Unweigh [.]	ted
E(level) [†] $J^{\pi,\frac{1}{2}}$ $T_{1/2}^{\#}$ XREF Comments $0.0^{@}$ $7/2^{-}$ stable ABCDEFGHIJKLMNOPQ TUV XYZ μ =+4.756487.2 (2005St24.1969Lu01.1951Pr02) Q=-0.22 <i>l</i> (2005St24.1976Er01) $\mu^{\circ}: HRR; ^{2}H$ stable ABCDEFGHIJKLMNOPQ TUV XYZ μ =+4.756487.2 (2005St24.1969Lu01.1951Pr02) Q=-0.22 <i>l</i> (2005St24.1976Er01) $\mu^{\circ}: MRR; ^{2}H$ standard. View NMR; ^{2}H standard. $Q: ABLDF;$ no pol correction. Others: -0.216 9 (1971Ch25. ASD, -0.220 2 (2000Ke12). Molecular spectroscopy), and -0.236 2 (2001Mi40. NMR; Sternheimer correction applied). 12.40 ^{&&a} 5 $3/2^{+}$ 325.8 ms 42 ABC E GHIJKLMNOPQ T V YZ \forall IT=100 μ =+0.368 5 (2006Ga47); Q=+0.318 22 (2006Ga47) $F':$ L(³ He,d)=2; D,E2 y from 1/2 ⁻¹ LAR. T _{1/2} : Mean lifetime r=0.470 s 6 from timing of K x-rays in Coulomb excitation (1967B114). Authors of 1967B114 mentioned that the lifetime measured in this work superseded their carlier lifetime reported in 1964Ho14. Value of 0.32 s <i>l</i> from 1967B114 cited in Nuclear Data Sheets evaluations (2008Bu01, 1992Bu01, 1983Bu021, 1977Be63, 1970Le28) seems erroneous. Note by B. Singh, May 01, 2021. μ ; $Q:$ collinear LASER spectroscopy using IGISOL. ⁴⁵ Sc gs. μ =+4.756487 2 (2005S124, 1969Lu01, 1951Pr02) and Q=-0.220 2 (2005S124, 2005Ke12) used as references. 376.50 ^b 12 $3/2^{-}$ 43.3 ps 2.3 AB DEFGH JKLMN P XY	4610 11	4601	4619	We	ighted	04.	00 12	0441	0434 20	We	igniteu	
$0.0^{\textcircled{0}}$ $7/2^-$ stable ABCDEFGHIJKLMNOPQ TUV XYZ $\mu=+4.756487\ 2\ (2005St24,1969Lu01,1951Pr02)$ $Q=-0.22\ l\ (2005St24,1976Er01)$ P^+ : J=7/2 from AB (1976Fu06, 1959Pr53). $\pi=-$ from L($^3He_4O=3$. μ^+ : NMR: 2H standard. Q : ABLDF: no pol correction. Others: $-0.216\ 9$ (1971Ch25. AB). $-0.220\ 2\ (2000Ke12.$ Molecular spectroscopy), and $-0.236\ 2\ (2001Mi40.$ NMR; Sternheimer correction applied). 12.40 ^{&Ca\ 5} $3/2^+$ $325.8\ ms\ 42$ ABC E GHIJKLMNOPQ T V YZ $\mu=+0.368\ 5\ (2006Ga47); Q=+0.318\ 22\ (2006Ga47)$ $\mu^-+1.2368\ 5\ (2006Ga47); Q=+0.318\ 22\ (2006Ga47)$ $\mu^-+1.2368\ 5\ (2006Ga47); Q=+0.318\ 22\ (2006Ga47)$ J^+ : L($^3He,d)=2$; D.E2 γ from 1/2 ⁻ IAR. $T_{1/2}$: mean lifetime $\tau=0.470\ s\ 6\ from timing of K x-rays in Coulomb excitation (1967B114). Authors of 1967B114. Authors of 1967B114. Value of 0.32 s I from 1967B114 cited in Nuclear Data Sheets evaluations (2008Bud).1992$	E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	X	REF				Comme	nts		
$(Q = -0.22 \ f(2053124, 1970E101))$ $F^{*}: J=7/2 \ from AB \ (1976Fu06, 1959Fr53), \pi=- \ from L(^{3}He,d)=3.$ $\mu: NMR; ^{2}H standard.$ $Q: ABLDF; no pol correction. Others: -0.216 \ 9$ $(1971Ch25, AB), -0.220 \ 2 (2000Ke12, Molecular spectroscopy), and -0.236 \ 2 (2001Mi40, NMR; Sternheimer correction applied).$ $12.40^{\&a} \ 5 \ 3/2^{+} \ 325.8 \ ms \ 42 \ ABC \ E \ GHI JKLMNOPQ \ T \ V \ YZ $ $(HT=100)$ $\mu=+0.368 \ 5 (2006Ga47); Q=+0.318 \ 22 (2006Ga47)$ $J^{*}: L(^{3}He,d)=2; D,E2 \ from 1/2^{-} IAR.$ $T_{1/2}: mean lifetime \ \tau=0.470 \ s \ 6 \ from timing \ of \ K xrays in Coulomb excitation (1967B114). Authors \ of 1967B114 mentioned that the lifetime measured in this work superseded their carlier lifetime reported in 1964H014. Value \ of 0.32 \ s \ I \ from 1967B114 \ number of 0.32 \ s \ I \ om 1967B114 \ 2021.$ $\mu,Q: collinear LASER spectroscopy using IGISOL. \ ^{45}Sc g.s. \ \mu=+4.756487 \ 2 (2005St24, 1969Lu01, 1951Pr02) and \ Q=-0.220 \ 2 (2005St24, 2000Ke12) \ used as references.$ $376.50^{b} \ 12 \ 3/2^{-} \ 43.3 \ ps \ 23 \ AB \ DEFGH \ JKLMN \ P$ $XY \qquad J^{\pi}: L(^{3}He,d)=1; E2 \ \gamma \ to 7/2^{-}.$ $T_{1/2}: from B(E2)f \ in \ Coul, ex. \ Others: 101 \ ps \ 28 \ (RDM), >1.1 \ ps \ (DSAM) \ in \ (n,p'). \ See also discussion in \ (p,p').$	0.0 [@]	7/2-	stable	ABCDEFGHIJKI	.MNOPQ TUV	XYZ	$\mu = +4.7564$	487 2 (2005	St24,1969	Lu01,19	51Pr02)	
12.40 ^{&d} 5 $3/2^+$ 325.8 ms 42 ABC E GHIJKLMNOPQ T V YZ %IT=100 μ =+0.368 5 (2006Ga47); Q=+0.318 22 (2006Ga47) μ =+0.368 5 (2006Ga47); Q=+0.318 22 (2005H24, 1969Lu01, 1951Pr02) μ Q: collinear LASER spectroscopy using IGISOL. ⁴⁵ Sc μ =-4.756487 2 (2005S124, 2000Ke12) used as references. 376.50 ^b 12 3/2 ⁻ 43.3 ps 23 AB DEFGH JKLMN P XY J ^x : L ³ He,d]=1; E2 γ to 7/2 ⁻ . $T_{1/2}$: from B(E2) γ in Coul. ex. Others: 101 ps 28 (RDM), >1.1 ps (DSAM), and 3.5 ps 13 (DSAM) in $(p,p'\gamma)$ and >4 ps from DSAM in (0,py). See also discussion in $(p,p'\gamma)$.							$Q=-0.22$ J ^{π} : J=7/2 J	from AB $(1$	976Fu06,) 1959Fr5:	3). $\pi = -$ fro	m
$\mu: NMR; {}^{2}H \text{ standard.}$ Q: ABLDF; no pol correction. Others: -0.216 9 (1971Ch25. AB), -0.220 2 (2000Ke12. Molecular spectroscopy), and -0.236 2 (2001Mi40. NMR; Sternheimer correction applied). $\mu=+0.368 5 (2006Ga47); Q=+0.318 22 (2006Ga47))$ JF: L(³ He,d)=2; D,E2 γ from 1/2 ⁻ IAR. T _{1/2} : mean lifetime $\tau=0.470 \text{ s}$ 6 from timing of K x-rays in Coulomb excitation (1967B114). Authors of 1967B114 mentioned that the lifetime neasured in this work superseded their earlier lifetime reported in 1964Ho14. Value of 0.32 s J from 1967B114 cited in Nuclear Data Sheets evaluations (2008Bu01, 1992Bu01, 1983Bu21, 1977Be63, 1970Le28) seems erroneous. Note by B. Singh, May 01, 2021. μ .Q: collinear LASER spectroscopy using IGISOL. ⁴⁵ Sc g.s. $\mu=+4.756487 2 (2005St24, 1969Lu01, 1951Pr02)$ and Q=-0.220 2 (2005St24, 2000Ke12) used as references. 376.50 ^b 12 3/2 ⁻ 43.3 ps 23 AB DEFGH JKLMN P XY J ^T : L(³ He,d)=1; E2 γ to 7/2 ⁻ . T _{1/2} : from B(E2)↑ in Coul. ex. Others: 101 ps 28 (DKM), >1.1 ps (DSAM), and 3.5 ps 13 (DSAM) in (p,p' γ) and >4 ps from DSAM in (a,py). See also discussion in (p,p' γ).							L(³ He,d)=3.	,		,	
$\begin{array}{cccc} (2; ABLDF; no pol correction. Others: -0.216 9 \\ (1971Ch25. AB), -0.220 2 (2000Ke12. Molecular spectroscopy), and -0.236 2 (2001Mi40. NMR; Sternheimer correction applied). \\ 12.40^{\& a} 5 3/2^+ 325.8 \mathrm{ms}42 ABC \ E \ GHI JKLMNOPQ \ T \ V \ YZ \% [T=100 \\ \mu=+0.368 5 (2006Ga47); Q=+0.318 22 (2006Ga47) \\ J^{\pi}: L^{3}\mathrm{He}, d)=2; D.E2 \gamma \ from 1/2^- 1AR. \\ T_{1/2}: mean lifetime \ r=0.470 \ s \ 6 \ from timing of \ K \\ x-rays in Coulomb excitation (1967B114). Authors of 1967B114 mentioned that the lifetime measured in this work superseded their earlier lifetime reported in 1964H014. Value of 0.32 s \ 1 \ from 1967B114 \ cited in Nuclear Data Sheets evaluations (2008Bu01, 1992Bu01, 1983Bu21, 1977Be63, 1970Le28) seems erroneous. Note by B. Singh, May 01, 2021. \\ \mu,Q: collinear LASER spectroscopy using IGISOL. \ ^{45}Sc \ g.s. \ \mu=+4.756487 2 (2005St24, 1969Lu01, 1951Pr02) and Q=-0.220 2 (2005St24, 1969Lu01, 1951Pr02) and Q=-0.220 2 (2005St24, 2000Ke12) used as references. \\ 376.50^{b} 12 \ 3/2^{-} 43.3 \ ps \ 23 \ AB \ DEFGH \ JKLMN \ P \ XY \ J^{\pi}: L(^{3}He, d)=1; E2 \gamma \ to 7/2^{-}. \\ T_{1/2}: from \ B(E2)\uparrow in \ Coul. ex. \ Others: 101 \ ps \ 28 (RDM), and 3.5 ps \ 13 \ (DSAM) \ in (p,p'\gamma) and >4 \ ps \ from \ DSAM \ in (\alpha,py). See also discussion in (p,p'\gamma). \\ \end{array}$							μ : NMR; ²	² H standard				
$12.40^{\&a} 5 3/2^{+} 325.8 \text{ ms } 42 \text{ABC E GHIJKLMNOPQ T V YZ} \qquad \% \text{IT}=100 \\ \mu=+0.368 5 (2006\text{Ga}47); \ Q=+0.318 22 (2006\text{Ga}47) \\ J^{\#}: \ L(^{3}\text{He},\text{d})=2; \ D, E2 \ \gamma \text{ from } 1/2^{-} \ \text{IAR.} \\ T_{1/2}: \text{ mean lifetime } \tau=0.470 \text{ s} 6 \text{ from timing of K} \\ x \text{ rays in Coulomb excitation (1967B114). Authors of 1967B114 mentioned that the lifetime measured in this work superseded their earlier lifetime reported in 1964H014. Value of 0.32 s 1 from 1967B114 cited in Nuclear Data Sheets evaluations (2008Bu01,1992Bu01,1983Bu21,1977Be63,1970Le28) seems erroneous. Note by B. Singh, May 01, 2021. \\ \mu,Q: collinear LASER spectroscopy using IGISOL. 45Sc g.s. \mu=+4.756487 2 (2005St24, 2000Ke12) \text{ used as references.} \\ 376.50^{b} 12 3/2^{-} 43.3 \text{ ps } 23 \text{AB DEFGH JKLMN P} \qquad XY \qquad J^{\#}: \ L(^{3}\text{He},\text{d})=1; \ E2 \ \gamma \text{ to } 7/2^{-}. \\ T_{1/2}: \text{ from B(E2)} \text{ in Coul. ex. Others: 101 ps 28} (\text{RDM}), s 1.1 ps (DSAM), and 3.5 ps 13 (DSAM) in (p,p'\gamma). \\ Listended if the state for the part of the state for the part of the state of $							Q: ABLDI	F; no pol co	α and α are consistent of α are consistent of α and α are consistent of α are consistent of α and α are consistent of α are consistent of α are consistent of α and α are consistent of α and α are consistent of α a	OOOV	-0.216 9 Molecula	
$12.40^{\&a} 5 3/2^{+} 325.8 \text{ ms} 42 \text{ABC E GHIJKLMNOPQ} \text{T V} \text{YZ} \qquad \% \text{IT}=100 \\ \mu=+0.368 5 (2006\text{Ga47}); Q=+0.318 22 (2006\text{Ga47}) \\ J^{\#}: L(^{3}\text{He}, d)=2; D, \text{E2} \gamma \text{from } 1/2^{} \text{ IAR.} \\ \text{T}_{1/2}: \text{ mean lifetime } \tau=0.470 s 6 \text{from timing of K} \\ \text{x-rays in Coulomb excitation (1967B114). Authors of 1967B114 mentioned that the lifetime measured in this work superseded their earlier lifetime reported in 1964Ho14. Value of 0.32 s I \text{from 1967B114} \text{ cited in Nuclear Data Sheets evaluations} \\ (2008Bu01, 1992Bu01, 1983Bu21, 1977Be63, 1970Le28) \\ \text{seems erroneous. Note by B. Singh, May 01, 2021.} \\ \mu, Q: \text{ collinear LASER spectroscopy using IGISOL.} ^{45}\text{Sc} \\ \text{g.s. } \mu=+4.756487 2 (2005\text{St}24, 1969Lu01, 1951Pr02) \\ \text{and } Q=-0.220 2 (2005\text{St}24, 2000\text{Ke12}) \text{ used as } \\ \text{references.} \end{cases} $ $376.50^{b} 12 3/2^{-} 43.3 \text{ ps} 23 \text{AB DEFGH JKLMN P} \qquad \text{XY} J^{\#}: \text{ L}(^{3}\text{He}, d)=1; \text{ E2 } \gamma \text{ to } 7/2^{-}. \\ \text{T}_{1/2}: \text{ from DSAM in } (\alpha, \rho\gamma). \text{ See also } \\ \text{discussion in } (p, p'\gamma) \text{ and } > 4 \text{ ps from DSAM in } (\alpha, \rho\gamma). \text{ See also } \\ \text{discussion in } (p, p'\gamma). \end{cases}$							spectros	(25. AB), -	-0.2362	2001Mi	$\frac{10}{10}$. NMR:	u
12.40 ^{&a} 5 3/2 ⁺ 325.8 ms 42 ABC E GHIJKLMNOPQ T V YZ %IT=100 μ =+0.368 5 (2006Ga47); Q=+0.318 22 (2006Ga47) J ⁷ : L(³ He,d)=2; D.E2 γ from 1/2 ⁻ IAR. T _{1/2} : mean lifetime τ =0.470 s 6 from timing of K x-rays in Coulomb excitation (1967B114). Authors of 1967B114 mentioned that the lifetime measured in this work superseded their earlier lifetime reported in 1964Ho14. Value of 0.32 s J from 1967B114 cited in Nuclear Data Sheets evaluations (2008Bu01,1992Bu01,1983Bu21,1977Be63,1970Le28) seems erroneous. Note by B. Singh, May 01, 2021. μ ,Q: collinear LASER spectroscopy using IGISOL. ⁴⁵ Sc g.s. μ =+4.756487 2 (2005St24, 1969Lu01, 1951Pr02) and Q=-0.220 2 (2005St24, 2000Ke12) used as references. 376.50 ^b 12 3/2 ⁻ 43.3 ps 23 AB DEFGH JKLMN P XY J ^F : L(³ He,d)=1; E2 γ to 7/2 ⁻ . T _{1/2} : from B(E2) \uparrow in Coul. ex. Others: 101 ps 28 (RDM), >1.1 ps (DSAM), and 3.5 ps 13 (DSAM) in (p,p' γ) and >4 ps from DSAM in (α ,py). See also discussion in (p,p' γ).							Sternhei	imer correct	ion applied	d).	,	
$\mu=+0.368 5 (2006Ga47); Q=+0.318 22 (2006Ga47)$ $J^{\pi}: L(^{3}He, d)=2; D, E \gamma \text{ from } 1/2^{-} \text{ IAR.}$ $T_{1/2}: \text{ mean lifetime } \tau=0.470 \text{ s} 6 \text{ from timing of K}$ $x-rays in Coulomb excitation (1967B114). Authors of 1967B114 mentioned that the lifetime measured in this work superseded their earlier lifetime reported in 1964Ho14. Value of 0.32 s I from 1967B114 cited in Nuclear Data Sheets evaluations (2008Bu01,1992Bu01,1983Bu21,1977Be63,1970Le28) seems erroneous. Note by B. Singh, May 01, 2021. \mu,Q: \text{ collinear LASER spectroscopy using IGISOL.}^{45}Sc \text{ g.s. } \mu=+4.756487 2 (2005St24, 1969Lu01, 1951Pr02) and Q=-0.220 2 (2005St24, 2000Ke12) used as references. 376.50b 12 3/2- 43.3 ps 23 AB DEFGH JKLMN P XY J^{\pi}: L(^{3}He,d)=1; E2 \gamma to 7/2 T_{1/2}: \text{ from B(E2)}\uparrow \text{ in Coul. ex. Others: 101 ps 28} (RDM), >1.1 ps (DSAM), and 3.5 ps 13 (DSAM) in (p,p'\gamma) and >4 ps from DSAM in (\alpha,py). See also discussion in (p,p'\gamma). W U(3) V = 0.516 (M) = 5.676$	12.40 ^{&a} :	5 3/2+	325.8 ms 42	ABC E GHIJKI	LMNOPQ T V	ΥZ	%IT=100					
$\begin{array}{llllllllllllllllllllllllllllllllllll$							$\mu = +0.368$	5 (2006Ga4	(7); $Q = +0$.318 22	(2006Ga47))
$11/2. \text{ Inclust fr=0.476 s of 1001 thing of R} \\ x-rays in Coulomb excitation (1967B114). Authors of 1967B114 mentioned that the lifetime measured in this work superseded their earlier lifetime reported in 1964Ho14. Value of 0.32 s 1 from 1967B114 cited in Nuclear Data Sheets evaluations (2008Bu01,1992Bu01,1983Bu21,1977Be63,1970Le28) seems erroneous. Note by B. Singh, May 01, 2021. \mu,Q: collinear LASER spectroscopy using IGISOL. 45Sc g.s. \mu=+4.756487 2 (2005St24, 1969Lu01, 1951Pr02) and Q=-0.220 2 (2005St24, 2000Ke12) used as references.376.50b 12 3/2- 43.3 ps 23 AB DEFGH JKLMN P XY J\pi: L(3He,d)=1; E2 \gamma to 7/2-.T_{1/2}: from B(E2)\uparrow in Coul. ex. Others: 101 ps 28 (RDM), >1.1 ps (DSAM), and 3.5 ps 13 (DSAM) in (p,p'\gamma) and >4 ps from DSAM in (\alpha,p\gamma). See also discussion in (p,p'\gamma).$							J^{n} : L(³ He,	,d)=2; D,E2 n lifetime τ	γ from 1/ -0.470 s 6	2 IAR.	ming of K	
$1967B114 mentioned that the lifetime measured in this work superseded their earlier lifetime reported in 1964Ho14. Value of 0.32 s I from 1967B114 cited in Nuclear Data Sheets evaluations (2008Bu01,1992Bu01,1983Bu21,1977Be63,1970Le28) seems erroneous. Note by B. Singh, May 01, 2021. \mu,Q: collinear LASER spectroscopy using IGISOL. 45Sc g.s. \mu=+4.756487 2 (2005St24, 1969Lu01, 1951Pr02) and Q=-0.220 2 (2005St24, 2000Ke12) used as references.376.50b 12 3/2- 43.3 ps 23 AB DEFGH JKLMN P XY J\pi: L(3He,d)=1; E2 \gamma to 7/2-.T_{1/2}: from B(E2)\uparrow in Coul. ex. Others: 101 ps 28 (RDM), >1.1 ps (DSAM), and 3.5 ps 13 (DSAM) in (p,p'\gamma) and >4 ps from DSAM in (\alpha,p\gamma). See also discussion in (p,p'\gamma).$							x-rays in	n Coulomb	excitation	(1967Bl	14). Author	s of
work superseded their earlier lifetime reported in 1964Ho14. Value of 0.32 s <i>I</i> from 1967B114 cited in Nuclear Data Sheets evaluations (2008Bu01,1992Bu01,1983Bu21,1977Be63,1970Le28) seems erroneous. Note by B. Singh, May 01, 2021. μ ,Q: collinear LASER spectroscopy using IGISOL. ⁴⁵ Sc g.s. μ =+4.756487 2 (2005St24, 1969Lu01, 1951Pr02) and Q=-0.220 2 (2005St24, 2000Ke12) used as references. 376.50 ^b 12 3/2 ⁻ 43.3 ps 23 AB DEFGH JKLMN P XY J ^{\pi} : L(³ He,d)=1; E2 γ to 7/2 ⁻ . T _{1/2} : from B(E2) \uparrow in Coul. ex. Others: 101 ps 28 (RDM), >1.1 ps (DSAM), and 3.5 ps 13 (DSAM) in (p,p' γ) and >4 ps from DSAM in (α ,p γ). See also discussion in (p,p' γ).							1967B11	4 mentione	d that the	lifetime	measured in	n this
$\begin{array}{rcl} 1964Hol4. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$							work su	perseded the	eir earlier	lifetime	reported in	1.
(2008Bu01, 1992Bu01, 1983Bu21, 1977Be63, 1970Le28) seems erroneous. Note by B. Singh, May 01, 2021. μ ,Q: collinear LASER spectroscopy using IGISOL. ⁴⁵ Sc g.s. μ =+4.756487 2 (2005St24, 1969Lu01, 1951Pr02) and Q=-0.220 2 (2005St24, 2000Ke12) used as references. 376.50 ^b 12 3/2 ⁻ 43.3 ps 23 AB DEFGH JKLMN P XY J ^{\pi} : L(³ He,d)=1; E2 γ to 7/2 ⁻ . T _{1/2} : from B(E2) \uparrow in Coul. ex. Others: 101 ps 28 (RDM), >1.1 ps (DSAM), and 3.5 ps 13 (DSAM) in (p,p' γ) and >4 ps from DSAM in (α ,p γ). See also discussion in (p,p' γ).							1964H0 Nuclear	14. value o Data Sheet	r 0.32 s <i>r</i> s evaluatio	from 190	5/BI14 cite	d 1n
seems erroneous. Note by B. Singh, May 01, 2021. μ ,Q: collinear LASER spectroscopy using IGISOL. ⁴⁵ Sc g.s. μ =+4.756487 2 (2005St24, 1969Lu01, 1951Pr02) and Q=-0.220 2 (2005St24, 2000Ke12) used as references. 376.50 ^b 12 3/2 ⁻ 43.3 ps 23 AB DEFGH JKLMN P XY J ^{\pi} : L(³ He,d)=1; E2 γ to 7/2 ⁻ . $T_{1/2}$: from B(E2) \uparrow in Coul. ex. Others: 101 ps 28 (RDM), >1.1 ps (DSAM), and 3.5 ps 13 (DSAM) in (p,p' γ) and >4 ps from DSAM in (α ,p γ). See also discussion in (p,p' γ).							(2008Bt	101,1992Bu	01,1983Bu	21,1977	Be63,1970I	Le28)
$\mu, Q: collinear LASER spectroscopy using IGISOL. 45Scg.s. μ=+4.756487 2 (2005St24, 1969Lu01, 1951Pr02)and Q=-0.220 2 (2005St24, 2000Ke12) used asreferences.376.50b 12 3/2- 43.3 ps 23 AB DEFGH JKLMN PXY Jπ: L(3He,d)=1; E2 γ to 7/2T1/2: from B(E2)↑ in Coul. ex. Others: 101 ps 28(RDM), >1.1 ps (DSAM), and 3.5 ps 13 (DSAM) in(p,p'γ) and >4 ps from DSAM in (α,pγ). See alsodiscussion in (p,p'γ).$							seems e	rroneous. N	ote by B.	Singh, N	fay 01, 202	.1.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							μ ,Q: collin	near LASER	spectrosc	opy usin	g IGISOL.	⁴⁵ Sc
376.50 ^b 12 3/2 ⁻ 43.3 ps 23 AB DEFGH JKLMN P XY J^{π} : L(³ He,d)=1; E2 γ to 7/2 ⁻ . T _{1/2} : from B(E2) \uparrow in Coul. ex. Others: 101 ps 28 (RDM), >1.1 ps (DSAM), and 3.5 ps 13 (DSAM) in (p,p' γ) and >4 ps from DSAM in (α ,p γ). See also discussion in (p,p' γ).							g.s. $\mu = -$ and $Q = -$	+4.7564872 -0.2202(2)	2(2005St24) 005St24, 2	4, 1969L 2000Ke1	2) used as	Pr 02)
$T_{1/2}: \text{ from } B(E2)\uparrow \text{ in Coul. ex. Others: 101 ps 28} (RDM), >1.1 ps (DSAM), and 3.5 ps 13 (DSAM) in (p,p'\gamma) and >4 ps from DSAM in (\alpha,p\gamma). See also discussion in (p,p'\gamma).$	376 50 12	3/2-	433 no 22		MN P	γv	reference $I^{\pi} \cdot I (^{3} \mathbf{U}_{2})$	d) $-1 \cdot F2 \sim$	to $7/2^{-}$			
(RDM), >1.1 ps (DSAM), and 3.5 ps $I3$ (DSAM) in $(p,p'\gamma)$ and >4 ps from DSAM in $(\alpha,p\gamma)$. See also discussion in $(p,p'\gamma)$.	570.50 12	5/2	-5.5 ps 25	AD DEPOR JAL		A 1	$T_{1/2}$: from	$B(E2)\uparrow$ in	Coul. ex.	Others:	101 ps 28	
$(p,p'\gamma)$ and >4 ps from DSAM in $(\alpha,p\gamma)$. See also discussion in $(p,p'\gamma)$.							(RDM),	>1.1 ps (D	SAM), and	1 3.5 ps	13 (DSAM) in
alscussion in $(p, p' \gamma)$.							$(p,p'\gamma)$	and >4 ps fi	rom DSAN	Λ in (α ,p	γ). See als	0
$543.06^{\circ \alpha}$ /4 5/2 5.5 ps 6 ABC E G LIKLMN XY J ^A : L(d. ³ He)=2: E1(+M2) \propto to 7/2	543.06 ^{cd} 1	4 5/2+	5.5 ns 6	ABC E G TIKI	.MN	χγ	J^{π} : L(d ³ H	$(p,p') = 2: E_1(+$). M2) ν to ΄	7/2-		

						T _{1/2} : other DSAM measurements: >0.38 ps from $(n,n'\gamma)$ and >0.55 ps from $(p,p'\gamma)$. 105 ps 28 (RDM) in $(p,p'\gamma)$ discrepant.
720.12 ^b 14	$5/2^{-}$	206 fs 16	Α	EFGHIJKLMN P	XY	J^{π} : L(d, ³ He)=3; D+Q γ to 3/2 ⁺ .
						$T_{1/2}$: from (γ , γ). Others: 0.25 ps +8-6 (DSAM) from
						$(\alpha, p\gamma)$, 0.15 ps 10 (DSAM) from $(n, n'\gamma)$, 193 fs 22
						(DSAM) from $(p,p'\gamma)$, and 0.5 ps 4 from B(E1) \uparrow in
						Coul. ex.

⁴⁵Sc Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF		Comments
939.24 ^e 15	1/2+	7.3 ps +6-3	E GH JKLMNO	XYZ	T _{1/2} : from DSAM in (α ,p γ). Other: >2.6 ps (DSAM) from (p,p' γ). <0.97 ps (DSAM) from (n,n' γ) is discrepant.
974.38 ^{&c} 15	7/2+	2.54 ps 23	ABC E G IJ LM	Y	J ^π : 5/2 ⁺ ,7/2 ⁺ from E1(+M2) γ to 7/2 ⁻ ; E2 γ to 3/2 ⁺ . Ne 5/2 from $p\gamma(\theta)$ in (α , $p\gamma$). T _{1/2} : other: >0.42 ps (DSAM) from (n,n' γ). 0.36 ps 4 from B(E1)↑=7.5×10 ⁻⁶ δ in Coul. ex. is discrepant.
1067.6 4	3/2-	0.28^{f} ps 6	DEFGH JKLMN	U XY	J^{π} : L(³ He,d)=1; M1+E2 γ to 5/2 ⁻ .
1236.70 ^w 25	11/2-	1.80 ^{<i>J</i>} ps <i>10</i>	ABC EFG IJKLMNO	XYZ	J^{π} : π =- from L(p,p')=2. J=7/2,11/2 from p $\gamma(\theta)$ in (α ,p γ). J=5/2,11/2 from $\gamma(\theta)$ in Coul. ex.
					$\Gamma_{1/2}$: from (γ, γ) . Others: 2.4 ps +10-6 from $(\alpha, p\gamma)$ and 1.60 ps 34 from $(p, p'\gamma)$; DSAM. 0.12 ps 8 (DSAM) from $(n, n'\gamma)$ discrepant.
1303.18 ^e 15	3/2+	2.3 ps +7-4	EG JKLN	XY	J ^π : L(d, ³ He)=2; γ from 1/2 ⁻ IAR. T _{1/2} : weighted ave of 2.4 ps +12-7 from (α,pγ) and 2.3 ps +9-5 from (p,p'γ); DSAM. >5.5 ps (1980Bu08; DSAM) discrepant in (p,p'γ).
1354.2? <mark>8</mark> 9	$(11/2^{-})^{h}$		С		
1408.87 ^b 20	(7/2)-	257 ^f fs +23–18	A EFGhI JKLMN	XY	J ^{π} : 3/2 ⁻ ,5/2 ⁻ ,7/2 ⁻ from M1+E2 γ to 7/2 ⁻ and D,E2 γ to 3/2 ⁻ ; Ne 3/2 from p $\gamma(\theta)$ in (α ,p γ). Member of K^{π} =3/2 ⁻ band. T _{1/2} : other: 0.28 ps 14 (DSAM) from (n,n' γ). <0.12 ps from (p, γ) and 0.43 ps +12-8 from (α ,p γ) are discrepant; DSAM. Note that T _{1/2} =299 fs 19 from (γ , γ) assuming J=5/2 is more compatible with the adopted T _{1/2} than 398 fs 24 assuming 7/2.
1433.49 ^d 21	9/2+	3.6 ps 18	BC E Gh JKL	Y	J^{π} : 7/2 ⁺ ,9/2 ⁺ from E2(+M3) γ to 5/2 ⁺ ; D+Q γ from 11/2 ⁺ . Ne 7/2 from p $\gamma(\theta)$ in (α ,p γ). T _{1/2} : unweighted ave of 5.4 ps +30–15
					from $(\alpha, p\gamma)$ and 1.9 ps 13 from $(p, p'\gamma)$;
1472.5? 9	$(7/2^+)$		J		J^{π} : 3/2 to 9/2 from γ 's to 5/2 ⁻ and 7/2 ⁻ .
1556.2 5	(3/2)-	0.28 ps +12-8	EFGH JKL N		$7/2^+$ from Hauser-Feshbach in (n,n'). J ^{π} : L(³ He,d)=1. d,E2 γ ? to 5/2 ⁺ . T _{1/2} : from DSAM in (α ,p γ).
1662.0 ^b 4	9/2-	98 ^f fs 10	A EFG IJKLM	V Y	J^{π} : M1+E2 γ to 7/2 ⁻ ; D(+Q) γ to 11/2 ⁻ . T _{1/2} : others: 0.14 ps +5-4 from (α ,p γ) and 0.13 9 from (α ,p γ) DSAM
1716? 30			K		0.13 7 Hom (5,7), Dorum
1800.0 ^e 5	5/2+	65 fs 15	A EGIJKLN	VXZ	J^{π} : L(d, ³ He)=2; d,E2 γ to 7/2 ⁻ . T ₁ /2; see also discussion in (p,p' γ).
1900.7 ^{<i>a</i>} 3			GH		
1930.6 ^{<i>a</i>} 3	1/2,3/2,5/2+		G	x	XREF: $x(1931)$.
1935.5 10		32 fs + 16 - 11	L	x	J . y to 1/2 . XREF: x(1931).
1933.37		$01 18 \pm 22 \pm 10$	L	х	AREF: X(1931).

⁴⁵Sc Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF		Comments
2031.2 ^{&} 7	11/2+	0.76 ps +12-8	BC E G KL	X	J ^{π} : 9/2 ⁺ ,11/2 ⁺ from D,E2 γ to 11/2 ⁻ ; E2(+M3) γ to 7/2 ⁺ . Ne 9/2 from p $\gamma(\theta)$ in (α ,p γ). T _{1/2} : weighted ave. of 0.37 ps 19 (598 γ) and 0.66 ps 25 (1057 γ) in (p,p' γ), 0.97 ps 14 in (¹⁸ O,p2n γ), and 1.1 ps +6-3 in (α ,p γ); DSAM.
2090	15/2-			Z	
2093.0 5	5/2	8.3 ^{<i>i</i>} fs 21	EFG IJKL	X	J ^{π} : D(+Q) γ 's to 3/2 ⁻ and 7/2 ⁻ . T _{1/2} : others: <35 fs from (α ,p γ), 21 fs 9 from (n,n' γ), and <7.6 fs from (p,p' γ); DSAM. 85 meV 9 in (γ , γ). See also discussion in (p,p' γ).
2106.2^{m} 3	$\leq 1/2$		G		$J^{**}: \gamma \ 10 \ 3/2$.
2106.3 3	15/2-	>1.4 ps	BC E KL O		J ^{<i>n</i>} : from p $\gamma(\theta)$ and linear polarization in $(\alpha, p\gamma)$. 1981Bo37 in (pol p, α) noted that there may Be significant fragmentation of the (($\nu f_{7/2}$) ⁺² ($\pi f_{7/2}$)) pickup strength to $15/2^{-1}$ states in ⁴⁵ Sc. T _{1/2} : other: >6 ps (DSAM) from (α p γ).
2138.4 ^{<i>a</i>} 5	3/2 ⁻ ,5/2	0.31 ps +9-7	G L	x	XREF: $x(2140)$. J ^{π} : D γ to (3/2) ⁻ : D.E2 γ to 7/2 ⁻ .
2151.0 ^{<i>a</i>} 5	(1/2,3/2,5/2) ^j	60 fs +17-12	Gk	x	XREF: k(2152.1)x(2140). J^{π} : Ne 7/2 ⁻ from D,E2 γ 's to 3/2 ⁺ . γ from 3/2 ⁽⁻⁾ res.
2152.0?	j		kL	x	XREF: k(2152.1)x(2140).
2221.8 ^{<i>a</i>} 5	(3/2 ⁻ ,5/2)		G	x	XREF: x(2213). J^{π} : γ to 3/2 ⁺ ; γ ?'s to 7/2 ⁻ and from $1/2^{-}.3/2^{-}$.
2224.2 5	5/2+,7/2+		JKL	x	XREF: x(2213). J^{π} : γ' s to 9/2 ⁺ and 3/2 ⁺ . $T_{1/2}$: 69 fs 14 from (n,n' γ) and 0.41 ps 17 from (p,p' γ) are discrepant; DSAM.
2288.5 6	(7/2 ⁻ ,9/2)	0.21 ps 7	hi KL	у	XREF: $h(2304)i(2291)y(2303)$. J^{π} : $7/2^{-}$, $9/2$, $11/2^{-}$ from D, E2 γ 's to $7/2^{-}$ and $11/2^{-}$. D, E2 γ ? to $7/2^{+}$. $T_{1/2}$: see also discussion in (p, p' γ).
2303.8 ^{<i>a</i>} 5	(5/2 ⁻) ^{kl}	55 ⁱ fs +35–17	FGhiJ L N	у	XREF: h(2304)i(2291)y(2303). J^{π} : 1/2,3/2,5/2 from D,E2 γ' s to 3/2 ⁻ and $3/2^+$. 5/2 ⁻ from D,E2 γ ? to 9/2 ⁻ . L(³ He,d)=1 for E(level)=2290. T _{1/2} : other: 0.83 ps 83 (DSAM) from (n,n' γ). See also discussion in (p,p' γ).
2321.5 10	3/2 ⁻ ,5/2,7/2 ⁺ <i>kl</i>	45 fs +11-7	h L N		XREF: h(2304). J^{π} : D,E2 γ 's to 7/2 ⁻ and 3/2 ⁺ . L(³ He,d)=1 for E=2290.
2341.0 4	$(7/2^{-})^{l}$	31 fs 7	fGhI JKL	у	XREF: $f(2351)h(2349)y(2342)$. J ^{π} : $3/2^{-}$, $5/2$, $7/2^{-}$ from D,E2 γ to $7/2^{-}$ and D,E2 γ from $3/2^{-}$ IAR. $7/2$, $9/2$, $11/2^{-}$ from Hauser-Feshbach in (p,p').
2352.2 ^{<i>a</i>} 5	3/2 ⁻ ,5/2 ^l		fGh KL	у	XREF: $f(2351)h(2349)y(2342)$. J^{π} : γ 's to $3/2^{-}$, $3/2^{+}$, and $7/2^{-}$. $T_{1/2} \ge 42$ fs $+28-17$, $T_{1/2} \le 194$ fs 56.

⁴⁵Sc Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$		XRE	F		Comments
2385? 7				K			
2531.0 ^{<i>a</i>} 5	(1/2+,3/2,5/2)		G	KL			J ^{π} : γ 's to $3/2^+$ and $5/2^+$ and from $3/2^{(-)}$ res. T _{1/2} : 81 fs +38–17 from (p, γ) and 21 fs 5 from (p,p' γ) are discrepant; DSAM.
2563.2 ^d 4	13/2+	1.0 ^m ps 3	BC E	K			J ^{π} : D γ to 15/2 ⁻ and D,E2 γ to 9/2 ⁺ . T _{1/2} : other: 1.4 ps +6-4 from DSAM in (α ,p γ).
2590.0 ^{<i>a</i>} 6	3/2 ⁻ ,5/2,7/2 ⁻¹	35 ⁱ fs 8	fG I	kL			XREF: f(2600)k(2596). J^{π} : D,E2 γ 's to $3/2^{-}$ and $7/2^{-}$. $T_{1/2}$: other: 10 fs 5 from DSAM in (p,p' γ) depending on placement of 2590 γ .
2601.4 ^{<i>a</i>} 5	1/2 ⁺ ,3/2,5/2 ^l		fG	k			XREF: f(2600)k(2596). J^{π} : γ 's to $3/2^{-}$ and $5/2^{+}$ and from $3/2^{+}$ res. $T_{1/2}$: see comment on preceding $T_{1/2}$.
2634? 7 2700? 7				K K			1/2
2747.0 ^a 10	5/2-,7/2-		FGH	K	U	Ζ	
2778.7 ^{<i>a</i>} 8	(1/2 ⁻ ,3/2,5/2)		G	JKL			J^{π} : γ 's to $3/2^+$ and $5/2^-$ and from $3/2^{(-)}$ res. T _{1/2} : 13 fs 4 from (p, γ) and 69 fs 14 from (n,n' γ) are discrepant; DSAM. Other: <20 fs from (p,p' γ), DSAM.
2860.7? ^a	$(1/2^{-}, 3/2, 5/2)$		G				J^{π} : γ ?'s to $3/2^+$ and $5/2^-$ and from $3/2^-$ IAR.
2895.2 ^{<i>a</i>} 5	1/2+,3/2,5/2	7 ^{<i>l</i>} fs 4	G				J ^{π} : D,E2 γ to 5/2 ⁺ and γ 's from 3/2 ⁺ res and 3/2 ⁽⁻⁾ res.
2903.8 ^{<i>a</i>} 7 2943 ^{<i>c</i>} 7	$3/2^+, 5/2^+$ $(5/2)^+$		FG F	N K		Z	J^{π} : π =+ from L(p,p')=3; J^{π} =5/2 ⁺ from DWBA
2960? 30	(9/2+,11/2-)			(0	у	In (p,α) . XREF: y(2967). I^{π} : from DWBA in (pol p α)
2964.0? ^a 15	$(3/2^+, 5/2^+)$		G			у	XREF: $\gamma(2967)$. I^{π} : γ^{2} 's to $1/2^{+}$ and $7/2^{+}$.
2979.8 ^a 18	3/2-		D FGH	K		у	XREF: $y(2967)$. J^{π} : $L(^{3}He,d)=1$; $L(\alpha,p)=1$. $3/2$ from empirical J dependence in (α, p) .
3025.5 ^{<i>a</i>} 6 3059? 7	1/2-,3/2-		FGH	KL K			
3092.0 ^{<i>a</i>} 8	1/2+,3/2,5/2		Gh				XREF: h(3104). J^{π} : γ 's to $3/2^{-}$ and $5/2^{+}$ and from $3/2^{+}$ res.
3104 ^{<i>a</i>}	$(3/2,5/2)^n$		Gh	k			XREF: h(3104,3119). J ^{π} : 3/2,5/2,7/2 from γ 's from 3/2 ⁻ and to 7/2 ⁻ . Ne 7/2 from $\sigma(\theta)$ and p-wave formation in p res.
3111.2 ^a 8	7/2+		Gh	k			XREF: h(3119). J^{π} : γ' s to 11/2 ⁺ and from 3/2 ⁺ res.
3136.3 ^{<i>a</i>} 7	5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻ ⁿ		FGh				XREF: h(3119,3150). J ^{π} : multiply-placed γ from 7711+7713+7715 triplet might exclude 9/2 ⁻ .
3159.1 6 3198 9			E h H	K K			XREF: h(3150).
3224! / 3283 7	(+)		F	K K			$I^{\pi} \cdot I(p p') = (1)$
3294.9 ^{&} 8	15/2+	0.46 ps 5	г BC	N			J ^π : L(p,p) =(1). J ^π : 11/2 ⁺ , 15/2 ⁺ from ΔJ=1 M1(+E2) or ΔJ=2 E2 γ to 13/2 ⁺ and ΔJ=0 d or ΔJ=2 E2 γ to 11/2 ⁺ . Member of $\pi d_{3/2}^{-1} f_{7/2}^{6}$ band.

⁴⁵Sc Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$ #	XREF		Comments
3329 7	+0		f K		XREF: f(3348).
3349 7	(*)		f K		XREF: $f(3348)$.
3363.5 ^g 7	(15/2 ⁻)		С		J [*] : L(p,p) =(1). J ^{π} : 11/2 ⁻ ,13/2,15/2 ⁻ from γ 's to 11/2 ⁻ and 15/2 ⁻ . Member of band based on (11/2 ⁻).
3366.4 ^a 8	(5/2)-		FGH		J^{π} : 5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻ from L(³ He,p)=0+2. Ne 7/2 ⁻ ,9/2 ⁻ from γ from 3/2 ⁺ res.
3400 8 3443 7	1/2 ⁻ ,3/2 ⁻ +0		H K K		
3457 ^a	$(5/2)^{-n}$		D fG		XREF: f(3473). J^{π} : L(α ,p)=3; empirical J dependence of $\sigma(\theta)$ In(a,p).
3462.1 ^{<i>a</i>} 8	5/2 ⁻ ,7/2 ⁻ <i>p</i>		fG		XREF: f(3473). J^{π} : γ 's to $3/2^{-}$ and from $3/2^{+}$ res.
3475 ^a	3/2+,5/2+		G N		-
3487.4 ^{<i>a</i>} 8 3525.2 ^{<i>a</i>} 8	3/2 ⁻ 3/2 ⁻ ,5/2		GH K G		J^{π} : L(³ He,d)=1; Ne 1/2 ⁻ from γ to 7/2 ⁻ . J^{π} : γ 's to (3/2) ⁻ and 7/2 ⁻ and from 3/2 ⁺
3548.5 ^a 8	$1/2^+$.3/2.5/2.7/2 ⁺		G		J^{π} : γ' s to $3/2^+$ and $5/2^+$.
3569.6 ⁹ 7	17/2-	<0.07 ps	BC		J^{π} : 11/2 ⁻ ,13/2 ⁻ ,17/2 ⁻ ,19/2 ⁻ from ΔJ=1 M1(+E2) or ΔJ=2 E2 γ to 15/2 ⁻ ; 17/2 from γ(θ) from 19/2 ⁻
3581 <i>15</i> 3584 ^{<i>a</i>} <i>1</i>	5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻ <i>n</i> 1/2,3/2,5/2 ⁺		F h Gh		XREF: h(3609). XREF: h(3609).
3606 7	+0		Fh K		J [*] : γ to 1/2 ⁺ . XREF: h(3609).
3692.9 [@] 4	19/2-	1.39 ps 14	BC 0	Z	J^{π} : 15/2,19/2 from $\gamma(\theta)$ to 15/2 ⁻ in (⁷ Li,p2n γ); 11/2 ⁻ ,19/2 ⁻ from ΔJ =2 E2 γ to 15/2 ⁻ .
3714.3 ^a 8	1/2,3/2,5/2 ^{kr}	13 ^{<i>i</i>} fs +14–10	FGh k n	Z	XREF: $h(3724)k(3715)n(3.73E+3)$. J ^{π} : D.E2 γ to $(3/2)^-$ and γ from $3/2^+$ res.
3722.3 ^a 10	kr		FGh k n		XREF: h(3724)k(3715)n(3.73E+3).
3776 13	(⁺) ⁰		H K		
3864.0? ^{<i>a</i>} 15	(1/2-) \$		G		
3882 11	$(1/2^{-})^{3}$		D FGH		J^{n} : L(³ He,d)=(1) and isotropic $\gamma(\theta)$ to $3/2^{-}$.
3890? 30	$\frac{1}{2} = \frac{3}{2} = \frac{5}{3}$		K u v		
3938 15	$5/2^{-}, 7/2^{-}, 9/2^{-}p$		F		
3982 7	$3/2^+, 5/2^+$		GH K N		
4031 7	+0		K		
4034 11	5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻ <i>P</i>		FH		
4055.4 ^{<i>u</i>} 6	17/2+	0.28 ^m ps 6	C		J ^{π} : 13/2,17/2 ⁺ from Δ J=0 d or Δ J=2 E2 γ to 15/2 ⁺ and Δ J=1 d+Q or Δ J=2 E2 γ to 15/2 ⁻ . Member of π d ⁻¹ _{3/2} f ⁶ _{7/2} band.
4084.9 ^{<i>a</i>} 10	(1/2 ⁻ ,3/2 ⁻)		FG K		J^{π} : 1/2,3/2,5/2 ⁺ from γ to 1/2 ⁺ . (5/2 to 9/2) ⁻ or (1/2,3/2) ⁻ from (³ He,p).
4129 ^c 7			H K		
4178 11			FH N		
4244 <i>11</i> 4307 <i>13</i>	_		FH HK		J^{π} : L(p,p')=2.

⁴⁵Sc Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$		XREF	Comments
4360 15	3/2+,5/2+		Н	N	E(level): from (³ He,d).
4424 15			Н	k	XREF: k(4427).
4464 15	1 /2 - 2 /2 -		f H	k	XREF: f(4488)k(4427).
4505 15	1/2-,3/2-		£GH		XREF: f(4488).
1516 11			ЕЦ		E(level): from (³ He,d).
4540 11	$(13/2^{-} 15/2^{+})$		гн	0	I^{π} , from $\sigma(\theta)$ and analyzing power in (pol
4010: 50	(15/2, 15/2)			U	$\mathbf{p}(\alpha)$
4610 11			FΗ		P.0.).
4662 11	(1/2,3/2)		FGH		J^{π} : from $\gamma(\theta)$ in (p,γ) .
4690? <i>30</i>	$(13/2^+, 15/2^-)$			0	J^{π} : from $\sigma(\theta)$ and analyzing power in (pol
					$p,\alpha).$
4713 15			± H		XREF: f(4/16).
4/39 15			I H fu	n	XKEF: $I(4/10)n(4.75E+3)$. VDEE: $f(7705)n(4.75E+2)$
4774 15			I H F U	п	AREF: $I(4/95)II(4.75\pm5)$. VDEF: $f(7705)$
4874 11			E H		$AKLI^{*}$. $I(4755)$.
4869 15			н		
4895 4 & 11	$19/2^{+}$	0.21^{m} ps 4	с —		I^{π} · 13/2 ⁺ 17/2 19/2 ⁺ from D E2 γ to 17/2 ⁺
1095.1 11	17/2	0.21 po /	C		and $\Delta J=1$ d+O or $\Delta J=2$ E2 γ to $15/2^+$.
					Member of $\pi d_{2,0}^{-1} f_{\pi,0}^{6}$ band.
4919 11	$(1/2^{-},3/2^{-})$		FΗ		J^{π} : L(³ He,p)=2.
4950? <i>30</i>	$(17/2^+)$			0	J^{π} : from $\sigma(\theta)$ and analyzing power in (pol
					p,α).
4965 11	5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻ ^p		FH		
5009 15			H		
5049 15			H		
5125 15			п		
5169 15	t		н	0	XREE o(5200)
5210 15	t		и И	0	XREF : $o(5200)$.
5261 11			FH	U	AREF: 0(5200).
5299 11			FH	n	XREF: n(5.34E+3).
5374 15			Н	n	XREF: n(5.34E+3).
5418.3 [@] 7	23/2 ^{-u}	1.32 ps 14	BC	0	
5419? 15			Н		
5444 15			Н		
5504 <i>15</i>			Н		
5516.4 ⁸ 6	$(19/2^{-})$		C		J^{π} : 15/2 ⁻ ,17/2,19/2 ⁻ from γ 's to 15/2 ⁻ , 17/2 ⁻ ,
5571 15					and $19/2$. Member of band based on $(11/2)$.
5604 15			п		
5669 12	$3/2^{+} 5/2^{+}$		FH	N	
5696.8^{d} 7	21/2+	0.28^{m} ns 14	с		I^{π} · 17/2 21/2 ⁺ from AI=0 d or AI=2 F2 γ to
5070.0 7	21/2	0.20 ps 14	C		$17/2^+$ and $\Delta J=1$ d+Q or $\Delta J=2$ E2 γ to
					19/2 ⁻ . Member of $\pi d_{3/2}^{-1} f_{7/2}^{6}$ band.
5710.6 ⁴ 7	(21/2 ⁻)		C		J ^{π} : 19/2,21/2,23/2 from Δ J=1 d+Q or Δ J=2 γ to 19/2 ⁻ and γ 's to 17/2 ⁻ and 19/2 ⁻ . Member
5774 20			F H		01 <i>m</i> _{7/2} 0and.
5810 20			f H		
5834 20			f H		
5931 20			Н		
5964 20			Н		

⁴⁵Sc Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$		2	XREF		Comments
5971 20				Н			
6004 20				Н			
6031 20				Н			
6119 17				FΗ			
6179 20				Н			
6202 20				Н			
6244 20				Н			
6332 13	n			FΗ			
6369 15	$3/2^+, 5/2^+$ ⁿ			F	N		E(level): from (³ He,p).
6438 12				FΗ			
6476 15				F			
6551 <i>15</i>	5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻ p			F			
6609 15				F			
6667 15	$(5/2^-, 7/2^-, 9/2^-)^p$			F		Z	XREF: z(6680).
6683.9 ^{&} 11	23/2+	0.17 ^m ps 4	С				J^{π} : 19/2,23/2 ⁺ from $\Delta J=0$ d or $\Delta J=2$ E2 γ to 19/2 ⁺ and D,E2 γ to 21/2 ⁺ . Member of $\pi d_{3/2}^{-1} f_{7/2}^{6}$
6699 15	7/2-			F		z	XREF: z(6680).
							J^{π} : L(³ He,p)=0.
6.75×10^3	$3/2^+, 5/2^+$				N		
6751 15	$(5/2^-, 7/2^-, 9/2^-)^p$			F			
6820 15	5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻ p			F			
7612.6 ^g 7	(23/2 ⁻)		С				J^{π} : 19/2 ⁻ ,21/2,23/2 ⁻ from γ 's to 19/2 ⁻ and 23/2 ⁻ . Member of band based on (11/2 ⁻).
7.65×10^3 ?					N		
7696.3? 15			С				
7711.0 18	v			G			
7712.5 17	V			G			
7714.9 17	V			G			
7725.0 17	3/2 ⁽⁻⁾			G			J^{π} : J from $\gamma(\theta)$ in (p,γ) ; π from inhibition of M2 transitions for 1f7/2 nuclides.
7774.4 17	3/2 ⁽⁺⁾			G			J^{π} : $3/2$ from $\gamma(\theta)$ in (p,γ) ; γ to $7/2^+$.
7929.3 ^d 8	25/2+ ^u	$< 0.07^{m}$ ps	C				
8003.4 12	$19/2^{-}$ to $27/2^{-}$	$< 0.07^{m}$ ps	C				J^{π} : D.E2 γ to 23/2 ⁻ .
8111.6 ^w 9	3/2-	37 eV 9		G			$\Gamma_{\rm p}$ =36 eV 9; Γ_{γ} =1.3 eV 4 J ^{π} : from $\gamma(\theta)$ and p-wave formation in p resonance studies.
8118.3		20 eV + 8 - 18		G			$\Gamma_{n}=20 \text{ eV} + 8 - 18$
8127.7 ^w 9	3/2-	23 eV 7		G			$\Gamma_{\rm p}=22 \text{ eV} 7; \Gamma_{\rm v}=0.87 \text{ eV} 24$
		20 0 0 0					J^{π} : from $\gamma(\theta)$ and p-wave formation in p resonance studies.
8305.3? 15			С				
8364.4 9	25/2+*	<0.07 ¹¹¹ ps	C				
8436.1	3/2 ⁻ ,5/2			G			J^{μ} : γ' s to $3/2^-$, $3/2^+$, and $7/2^-$.
8471.3	5/2*	10 11 5		G			$J'': \gamma'$ s to $1/2^+$, $1/2^-$, and $7/2^+$.
8475.8	(3/2)	12 eV 5		G			$I_p = 12 \text{ eV} 3; I_{\gamma} = 0.42 \text{ eV}$
8484.4	(3/2)	25 eV /		G			$I_p = 25 \text{ eV}; I_{\gamma} = 0.1 / \text{ eV}$
8491.9	3/2 2/2-	80 aV 15		G			$1_{\gamma \geq 0.35} \text{ eV } 10$ $\Gamma = 80_{0} \text{ eV } 15; \Gamma = 0.45_{0} \text{ eV}$
047/./	512	00 EV 15		G			$r_{p} = 00 \text{ ev} 13, r_{\gamma} = 0.43 \text{ ev}$

⁴⁵Sc Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #		XREF	Comments
8503.3 ^y	3/2-	400 eV 40		G	$\Gamma_{\rm p}$ =400 eV 40; Γ_{γ} =0.41 eV
8509.5	3/2-			G	P / /
8515.9 ^y	3/2-	60 eV 10		G	$\Gamma_{\rm p} = 60 \text{ eV } 10; \ \Gamma_{\gamma} = 0.34 \text{ eV}$
8519.3 ^y	$3/2^{-}$	30 eV 7		G	$\Gamma_{\rm p}$ =30 eV 7; Γ_{γ} =0.32 eV
8528.4 ^y	$(3/2)^{-}$	7 eV 5		G	$\Gamma_p = 7 \text{ eV } 5; \Gamma_{\gamma} = 0.16 \text{ eV}$
8529.2 ^y	$(3/2)^{-}$	5 eV 3		G	$\Gamma_p=5 \text{ eV } 3; \Gamma_{\gamma}=0.16 \text{ eV}$
8533.1 ^y	3/2-	10 eV 5		G	$\Gamma_p = 10 \text{ eV } 5; \ \Gamma_{\gamma} = 0.11 \text{ eV}$ $J^{\pi}: 1/2^+, 3/2, 5/2^+ \text{ from D, E2 } \gamma \text{ to } 5/2^+ \text{ and } \gamma \text{ to } 1/2^+.$
8543.2 ^y	3/2-	10 eV 5		G	$\Gamma_{\rm p}=10 \text{ eV } 5; \ \Gamma_{\gamma}=0.32 \text{ eV}$ $J^{\pi}: 3/2, 5/2^+ \text{ from D,E2 } \gamma' \text{ s to } 1/2^+, 5/2^-, \text{ and } 5/2^+.$ $(3/2)^- \text{ from line-shape analysis in p res.}$
8552.7 ^z	$(1/2)^{-}$	10 eV 5		G	$\Gamma_{\rm p}=10 \text{ eV}$ 5: $\Gamma_{\rm v}=0.28 \text{ eV}$
8580.1 ^Z	$1/2^{-}$	50 eV 10		G	$\Gamma_{\rm p} = 50 \text{ eV} \ 10; \ \Gamma_{\rm v} = 0.13 \text{ eV}$
8591.4 ^z	$(1/2)^{-}$	15 eV 5		G	$\Gamma_{\rm p}=15 \text{ eV} 5; \Gamma_{\rm v}=0.12 \text{ eV}$
8606.3	5/2			G	J^{π} : γ' s to $3/2^{-}$, $3/2^{+}$, $7/2^{-}$, and $7/2^{+}$.
8616.1 ²	$1/2^{-}$	40 eV 10		G	$\Gamma_{\rm p} = 40 \text{ eV } 10; \ \Gamma_{\gamma} = 0.37 \text{ eV}$
8622.4 ^{&} 11	27/2+ <i>x</i>	0.19 ^m ps 6	С		1 /
8658.2 ^Z	$(1/2)^{-}$	26 eV 7		G	$\Gamma_{\rm p} = 25 \text{ eV } 7; \Gamma_{\rm v} = 0.79 \text{ eV}$
8664.9 ^z	$(1/2)^{-}$	5 eV 3		G	$\Gamma_{\rm p}^{\rm P} = 5 \text{ eV } 3; \ \Gamma_{\rm v} = 0.23 \text{ eV}$
8674.5 ^z	$(1/2)^{-}$	15 eV 5		G	$\Gamma_{\rm p}^{\rm r} = 15 \text{ eV} 5; \ \Gamma_{\gamma} = 0.19 \text{ eV}$
8696.4 ^z	$1/2^{-}$	36 eV 7		G	$\Gamma_{\rm p}^{'}=35 \text{ eV } 7; \Gamma_{\gamma}^{'}=0.51 \text{ eV}$
8711.7 ²	$(1/2)^{-}$	15 eV 5		G	$\Gamma_{\rm p} = 15 \text{ eV} 5; \Gamma_{\gamma} = 0.46 \text{ eV}$
8716.1 ^z	$(1/2)^{-}$	26 eV 7		G	$\Gamma_p=25 \text{ eV } 7; \Gamma_{\gamma}=0.85 \text{ eV}$
8735.5 ²	$1/2^{-}$	60 eV 10		G	$\Gamma_{\rm p} = 60 \text{ eV } 10; \ \Gamma_{\gamma} = 0.33 \text{ eV}$
8749.2 ²	$(1/2)^{-}$	11 eV 5		G	$\Gamma_p=10 \text{ eV } 5; \Gamma_{\gamma}=0.91 \text{ eV}$
8754.5 ¹	1/2-	100 eV 15		G	$\Gamma_{\rm p}$ =100 eV 15; Γ_{γ} =0.28 eV Probable doublet.
8766.3 ¹	$1/2^{-}$	52 eV 10		G	$\Gamma_{\rm p} = 50 \text{ eV } 10; \ \Gamma_{\gamma} = 1.61 \text{ eV}$
8794.8 ¹	$1/2^{-}$	76 eV 15		G	$\Gamma_{\rm p} = 75 \text{ eV} \ 15; \ \Gamma_{\rm v} = 0.56 \text{ eV}$
8807 5 ¹	1/2-	35 eV 7		G	$\Gamma_{r} = 35 \text{ eV} 7$: $\Gamma_{r} = 0.32 \text{ eV}$
8813.0 ¹	$(1/2)^{-}$	21 eV 5		c	$\Gamma = 20 \text{ eV} 5$; $\Gamma = 1.38 \text{ eV}$
0013.7	(1/2)	21 EV J		G	$\Gamma_{p} = 20 \text{ eV} 5$; $\Gamma_{\gamma} = 1.58 \text{ eV}$
8824.71	(1/2)	11 eV 5		G	$\Gamma_p = 10 \text{ eV} 3; \Gamma_{\gamma} = 0.52 \text{ eV}$ Probable doublet.
8838.2	$1/2^{-}$	400 eV 40		G	$\Gamma_{\rm p} = 400 \text{ eV } 40; \ \Gamma_{\gamma} = 0.29 \text{ eV}$
8844.4 ¹	$1/2^{-}$	35 eV 7		G	$\Gamma_p=35 \text{ eV } 7; \Gamma_{\gamma}=0.10 \text{ eV}$
8862.8 ¹	$1/2^{-}$	175 eV 20		G	$\Gamma_{\rm p} = 175 \text{ eV } 20; \ \Gamma_{\gamma} = 0.28 \text{ eV}$
8870.5 ¹	$1/2^{-}$	241 eV 25		G	$\Gamma_{\rm p} = 241 \text{ eV} 25; \Gamma_{\rm v} = 0.40 \text{ eV}$
8885.7 ¹	$1/2^{-}$	54 eV 10		G	$\Gamma_{\rm p} = 53 \text{ eV} 10$: $\Gamma_{\rm q} = 0.50 \text{ eV}$
8888 4 ¹	1/2-	351 eV 35		G	$\Gamma = -350 \text{ eV} - 25$; $\Gamma = -0.31 \text{ eV}$
8801.7	1/2-	551 CV 55		C C	$\Gamma_{\rm p} = 550 \text{ eV} 25, \Gamma_{\gamma} = 0.51 \text{ eV}$
8891.7	1/2	04 eV 10		G	$I_{p} = 0.5 \text{ eV} I0, I_{\gamma} = 0.01 \text{ eV}$
8908.21	1/2	243 eV 25		G	$I_p = 242 \text{ eV } 23; I_{\gamma} = 0.75 \text{ eV}$
8917.21	1/2-	36 eV 7		G	$\Gamma_p=35 \text{ eV } 7; \Gamma_{\gamma}=0.86 \text{ eV}$ Probable doublet.
8935.0 ¹	$1/2^{-}$	64 eV 10		G	$\Gamma_{\rm p} = 63 \text{ eV } 10; \ \Gamma_{\gamma} = 0.61 \text{ eV}$
8947.7 ¹	$(1/2)^{-}$	20 eV 5		G	$\Gamma_p=19 \text{ eV } 5; \Gamma_{\gamma}=0.55 \text{ eV}$
8948.9 ¹	$(1/2)^{-}$	16 eV 5		G	$\Gamma_{\rm p} = 15 \text{ eV} 5; \Gamma_{\rm v} = 0.61 \text{ eV}$
8961.2 ¹	1/2-	60 eV 10		G	$\Gamma_{\rm p} = 60 \text{ eV} 10$: $\Gamma_{\rm e} = 0.29 \text{ eV}$
8065 3 ¹	1/2-	31 eV 7		Č	$\Gamma = -30 \text{ eV} 7: \Gamma = -0.81 \text{ eV}$
8975.5 ⁹ 12	$(25/2^{-})$	51 6 ¥ /	С	U	J^{π} : 19/2 ⁻ to 27/2 ⁻ from γ to 23/2 ⁻ . Member of
8983.5 ¹	1/2-	49 eV 10		G	$\Gamma_{\rm p} = 48 \text{ eV } 10; \ \Gamma_{\gamma} = 0.55 \text{ eV}$

⁴⁵Sc Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$		XREF	Comments
8996.3 ¹	1/2-	40 eV 10	G		$\Gamma_{\rm p} = 40 \text{ eV } 10; \ \Gamma_{\gamma} = 0.26 \text{ eV}$
9017.0 ¹	$(1/2)^{-}$	12 eV 5	G		$\Gamma_{\rm p} = 11 \text{ eV } 5; \Gamma_{\rm v} = 0.38 \text{ eV}$
9164.0? 15			С		P 7
9481.1? 15			С		
10001.1? 16			С		
10007.6 ^g 9	(27/2 ⁻)		С		J^{π} : 19/2 ⁻ to 27/2 ⁻ from γ 's to 23/2 ⁻ states (5419 and 7612). Member of band based on (11/2 ⁻).
10169.4 ^d 10	(29/2+)		C		J^{π} : 23/2 ⁺ ,25/2,27/2,29/2 ⁺ from γ 's to 25/2 ⁺ and 27/2 ⁺ . Member of $\pi d_{2/2}^{-1} f_{2/2}^{6}$.
10299.2? 15			С		5/2 1/2
10936.2? 15			С		
11021.9 ^{&} 13	(31/2 ⁺)		C		J ^π : 23/2,25/2,29/2,31/2 from ΔJ=1 d+Q or ΔJ=2 Q γ to 27/2 ⁺ . Member of $\pi d_{3/2}^{-1} f_{7/2}^{6}$ band.
11201.2 11	(29/2+)		С		J^{π} : from DCO ratios and linear polarization in (¹⁸ O,p2n γ) (2001Be12. No details given). Parentheses added by the evaluator.
12142.2? 16			С		
12592.7 <mark>8</mark> 14	$(31/2^{-})$		С		J^{π} : member of band based on $(11/2^{-})$.
13372.5 14	(31/2 ⁺)		С		J^{π} : from DCO ratios and linear polarization in (¹⁸ O,p2n γ) (2001Be12. No details given). Parentheses added by the evaluator.
13674.6? 15			С		
14516.8 ^d 13	(33/2+)		C		J ^{π} : (27/2 ⁺ ,29/2,31/2,33/2 ⁺) from γ 's to (29/2 ⁺) and (31/2 ⁺). Member of $\pi d_{2,0}^{-1} f_{3,0}^{-}$ band.
15313.3? 16			С		5/2 1/2
15702.8 <mark>8</mark> 17	$(35/2^{-})$		С		J^{π} : member of band based on (11/2 ⁻).
16462.2 ^{&} 17	$(35/2^+)$		С		J^{π} : member of $\pi d_{3/2}^{-1} f_{7/2}^{6}$ band.

[†] Bound state excitation energies were derived by a least-squares adjustment to the $E\gamma$'s ($\Delta E(\gamma)=1$ keV assumed when not given), except as noted in the footnotes, comments, or XREF column (these energies were held fixed in the adjustment). Excitation energies of the resonances are from (p, γ) and were not included in the adjustment.

[‡] From angular momentum transfer in (³He,d) or (d,³He) for ex<7 MeV and from line shape analysis in p resonances for ex>7 MeV, except as noted.

[#] $T_{1/2}$'s are from DSAM in (p,p' γ), except as noted, and resonant Γ 's are from p resonance studies.

^(a) Band(A): $\pi f_{7/2}^5$, $\alpha = -1/2$. Identified as a $K^{\pi} = 3/2^-$ band based on J(J+1) energy dependence and enhanced B(E2)(W.u.)'s (1985Av04). 1998Be29 identified the members as belonging to the $\pi f_{7/2}^5 \alpha = -1/2$ and extended the structure from 3693 keV to 10169 keV. 2001Be12 reassigned 7929, 25/2⁻, and 10169, 27/2⁻, as the 25/2⁺ and 29/2⁺ members of the $\pi d_{3/2}^{-1} f_{7/2}^6$ band.

& Band(B): $\pi d_{3/2}^{-1} f_{7/2}^{6}$, $\alpha = -1/2$. Identified as a 3/2[202] band based on J(J+1) energy dependence and enhanced B(E2)(W.u.)'s (1985Av04). 1998Be29 extended this band from 3296 keV to 13601 keV. 2001Be12 further extended the structure to 16462 keV, identified the 16462 keV state as the 35/2⁺ member of this band instead of the 13601 keV state as proposed by 1998Be29, and reassigned the 7929, 25/2⁻, and 10169, 27/2⁻, members of the $\pi f_{7/2}^{5}$ as the 25/2⁺ and 29/2⁺ members of of this band.

^{*a*} Excitation energy is from (p,γ) .

^b Band(C): $K^{\pi}=3/2^{-}$ band. Based on J(J+1) energy dependence and enhanced B(E2)(W.u.)'s (1985Av04).

- ^{*c*} Excitation energy is from $(p,p'\gamma)$ or (p,p').
- ^d Band(D): $\pi d_{3/2}^{-1} f_{7/2}^{6}$, $\alpha = +1/2$. See footnote on $\pi d_{3/2}^{-1} f_{7/2}^{6}$, $\alpha = -1/2$.

^e Band(E): 1/2(200) band.

 f T_{1/2} from B(E2) \uparrow in Coulomb excitation not included in the evaluated value since 1986Ta14 noted that the compound nuclear contribution was \approx 50%.

^g Band(F): Band based on (11/2⁻). The deformation of this band exhibits similar behavior in magnitude and trend at high spins as that of the $\pi d_{3/2}^{-1} f_{7/2}^6$ band. This effect may point out that the deformation of ⁴⁵Sc is not directly related to the number of

⁴⁵Sc Levels (continued)

involved particle-hole excitations. (2004Be20).

- ^h See footnote on Band based on $(11/2^{-})$.
- ^{*i*} From DSAM in (p, γ) .
- j (1/2⁻),1/2⁺ from Hauser-Feshbach analysis in (p,p').
- ^k L(d,³He)=1 for 2.3-MeV multiplet and 2 for 3.7-MeV multiplet.
- ^l L(³He,p)=2 for the multiplet.
- ^{*m*} From DSAM in 30 Si(18 O,p2n γ).
- ^{*n*} L(³He,p)=0+2 or (0+2) for the multiplet.
- ^o L(p,p')=3.
- p L(³He,p)=0+2 or (0+2).
- ^q Band(G): $\pi f_{7/2}^5$, $\alpha = +1/2$. See footnote on the $\alpha = -1/2$ signature members of this band.
- ^{*r*} $L(^{3}He,d)=1$ for the multiplet.
- ^s L=(1), J^{π} =(3/2⁻) in (α ,p) for the doublet.
- ^t (11/2⁻,13/2⁺) for the multiplet from $\sigma(\theta)$ and analyzing power in (pol p, α).
- ^{*u*} $J^{\pi}(5419)=15/2^{-}, 19/2, 23/2^{-}$ from $\Delta J=0$ d or $\Delta J=2$ E2 γ to $19/2^{-}$. $J^{\pi}(7929)=19/2^{+}, 21/2, 23/2, 25/2^{+}$ from D,E2 γ to $21/2^{+}$ and γ to $23/2^+$. $J^{\pi}(5419)=19/2, 23/2^-$ and $J^{\pi}(7929)=21/2$, $J^{\pi}(5419)=19/2$ and $J^{\pi}(7929)=23/2$, or $J^{\pi}(5419)=23/2^-$ and $J^{\pi}(7929)=25/2^+$ from connecting $\Delta J=1$ d+Q or $\Delta J=2$ E2 γ . Members of the $\pi f_{7/2}^5$ and $\pi d_{3/2}^{-1} f_{7/2}^6$, respectively.
- ^{*v*} Possibly $3/2,5/2^+$ from multiply placed γ 's to $1/2^+$, $5/2^-$, and $5/2^+$. ^{*w*} Fragments of ⁴⁵Ca 1435, $3/2^-$, IAR.
- ^x $J^{\pi}(8364)=19/2^{-},21/2,25/2,27/2^{-}$ from $\Delta J=1$ d+Q or $\Delta J=2$ E2 to $23/2^{-}$. $J^{\pi}(8622)=19/2^{+},21/2,25/2,27/2^{+}$ to $23/2^{+}$. $J^{\pi}(8364)=21/2^{+}$ and $J^{\pi}(8622)=19/2^{+}$, $J^{\pi}(8364)=19/2^{-},23/2$ and $J^{\pi}(8622)=21/2$, $J^{\pi}(8364)=27/2^{-}$ and $J^{\pi}(8622)=25/2$, or $J^{\pi}(8364)=25/2^+$ and $J^{\pi}(8622)=27/2^+$ from connecting M1+E2 γ . $J^{\pi}(8622)=27/2^+$ from membership in $\pi d_{3/2}^{-1} f_{7/2}^6$ band;

therefore, $J^{\pi}(8364)=25/2^+$.

^y Fine structure of the 45 Ca 1904, $3/2^-$, IAR.

¹ Fine structure of the ⁴⁵Ca 2251, 1/2⁻, IAR.

^z Background $1/2^{-}$ states.

 $\gamma(^{45}\mathrm{Sc})$

See $(\alpha, p\gamma)$ for unplaced gammas.

13

B(E1)(W.u.), B(E2)(W.u.), B(M2)(W.u.) and comparison to RUL: calculations for γ 's from proton resonances were performed using the partial Γ_{γ} 's if possible and the total Γ_{γ} for other cases instead of the total level Γ .

E(B) TV	Gamma ene	ergy is an unwei	ghted average	of the followi	ing data:						
Adopted	arepsilon Decay	(¹⁹ F,2pγ)	$(\alpha, pn\gamma)$		(γ, γ)	$(n, n'\gamma)$) (p,p	'γ)	(μ, Xn)	<u>(</u>	
364.19 14	364 1	364.55 25					363.8	5	364.35 3	3 364.2	23 13
543.14 14	543 <i>1</i>	542.8 <i>9</i>	543.2 <i>2</i>	543 <i>2</i>	543.2	5	543.09 <i>23</i>				
720.22 17	719.6 3		720.6 5	720 1	720.3	5	720.34 15	719	9.94		
869.57 13		869.44 15	869.7 2								
890.9 <i>8</i>		889.8 3	891.0 3			893 1	889	.86			
962.01 11	961.6 <i>6</i>	962.03 20	962.4 <i>2</i>	962 <i>2</i>	962 1		962.02 14				
974.42 15	974.0 5	974.64 20	974.7 3	974 <i>2</i>	974.8	5	974.39 14				
1032.4 4	1032.1 5									1032.79 39	
1237.07 20	1236.5 5	1237.25 30	1237.4 2				1237.13	18			
1408.6 5	1408.1 3									1409.08 42	
1435.4 16		14	33.8 1	1437 2							
1662.4 6	1660.9 3		1662.4 3	1663 2	1664 <i>2</i>	1	1661.9 <i>10</i>				
2094.0 10			2093	2		2094	.9 10				
E(D) TV	Gamma ene	ergy is a weight	ed average of	the following	data:						
Adopted	arepsilon Decay	$(^{19}\mathrm{F}, 2\mathrm{p}\gamma)$	$(\alpha, p\gamma)$		(γ, γ)	$(n,n'\gamma)$) (p,p')	/)	Coul.	ex.	
377.1 4				377.3 5		37	6.94 49				
425.1 3	425 1		425.4 5	426 1	425	.4 5					
431.77 11		432 1	431.9 2				431.71	13			
459.06 17		45	9.0 <i>2</i>				459.2	3			
530.65 15	530 1	530.95 15	530.7 <i>2</i>	531 <i>2</i>	530.6	5 5	30.66 17				
926.8 4				926.7 5	926.8	5					
2341.5 9			2341	2		2341.	6 10				
$F_{\cdot}(\text{level}) = I^{\pi}$	F.,†	$\mathbf{L}^{\dagger} \mathbf{F} \mathbf{c} \mathbf{I}^{\pi}$	Mult $\ddagger \alpha^{u}$				Comment	s			
$L_l(level) = J_i$	Ľγ	r_{γ} L_{f} J_{f}	Muit. a	·			Comment	5			
$12.40 3/2^+$	12.40 5	$100 0.0 7/2^-$	(M2) 423 9	$\alpha(K)=362~8;~\alpha$	$\alpha(L)=53.5 \ 12; \ \alpha(C)=53.5 \ 12; \ 13; $	M)=6.63	15; $\alpha(N)=0.29$	87			
				B(M2)(W.u.)=0	0.0606 15						
				E_{γ} : from level	energy (B. Sing	h, May 01	1, 2021). Other	: 12.4 :	from ε decay	y, with $\Delta E = +$	0.1 - 0.2
				keV in 2008	Bu01 evaluation	. Commen	nt modified by	B. Sing	gh, May 01,	2021.	
				I_{γ} : from ε deca	ay.						
				$\alpha(K) \exp = 428$.	37.						
				$\alpha(K)$ exp value	deduced by B. S	Singh, Ma	y 01, 2021, we	ighted	average of 4	429 117 from	ε decay,
				412 27 from			C 1				
				415 57 11011	$(p,p'\gamma)$, and 58	0 <i>120</i> from	n Coul. ex.				
				Mult.: D,Q fro	$(p,p'\gamma)$, and 58 or comparison to	$0 \ 120 \ \text{from}$ o RUL. Δ .	n Coul. ex. $J^{\pi}=2$, yes from	level so	cheme.		
				Mult.: D,Q fro	$(p,p'\gamma)$, and 58 mm comparison to	$0 \ 120 \ \text{from}$ o RUL. Δ_s	n Coul. ex. $J^{\pi}=2$, yes from	level so	cheme.		

					Adopt	ed Levels, Gamma	as (continued)	
						γ ⁽⁴⁵ Sc) (contin	ued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ [#]	$\alpha^{\boldsymbol{\mu}}$	Comments
376.50	3/2-	364.19 <i>14</i>	100.00 20	12.40 3/2+	(E1(+M2))	-0.01 8	5.09×10 ⁻⁴ 18	α: from BrIcc for M2. Other: 501 43 from α(K)exp=428 37, and α=1.17(α(K)exp), the ratio of total α/α(K) (theory) from BrIcc. 2008Bu01 evaluation used K/L+=3. Comment added by B. Singh, May 01, 2021. B(M2)(W.u.) deduced by B. Singh, May 01, 2021. α(K)=0.000463 17; α(L)=4.07×10 ⁻⁵ 15; α(M)=5.04×10 ⁻⁶ 19; α(N+)=2.81×10 ⁻⁷ 10
								$ α(N)=2.81 \times 10^{-7} 10 $ B(E1)(W.u.)=0.000234 13; B(M2)(W.u.)=0.8 +130-8 Mult.: D(+Q) from γ(θ) in (α,pγ). Δπ=yes from level scheme
		377.1 4	9.11 20	0.0 7/2-	E2(+M3)	-0.01 2	0.00198 <i>3</i>	α(K)=0.00180 3; α(L)=0.0001595 24; α(M)=1.97×10-5 3; α(N+)=1.086×10-6 16 α(N)=1.086×10-6 16 B(E2)(W.u.)=15.0 9; B(M3)(W.u.)=7.E+4 +30-7 Iγ: weighted ave of Iγ(377γ)/Iγ(364γ)=0.087 13 from (p,γ), 0.094 7 from (α,pγ), 0.088 5 from (p,p'γ), and 0.0958 21 from Coul. ex. Mult.: from γ(θ) in (α,pγ) and comparison to RUL. Additional information 1.
543.06	5/2+	166.4	0.7 4	376.50 3/2-	(E1) [@]		0.00518 8	$\alpha(K)=0.00472 \ 7; \ \alpha(L)=0.000414 \ 6; \ \alpha(M)=5.11\times10^{-5} \ 8; \ \alpha(N+)=2.82\times10^{-6} \ 4 \ \alpha(N)=2.82\times10^{-6} \ 4 \ B(E1)(W.u.)=9.E-5 \ 5 \ E_{\gamma}, I_{\gamma}: \ from \ Coulomb \ excitation.$
		530.65 <i>15</i>	100.0 7	12.40 3/2+	M1+E2 ^{&}	-0.55 +11-18	0.00037 4	B(M1)(W.u.)=0.0120 <i>18</i> ; B(E2)(W.u.)=35 <i>12</i> α (K)=0.00034 <i>4</i> ; α (L)=3.0×10 ⁻⁵ <i>4</i> ; α (M)=3.7×10 ⁻⁶ <i>4</i> ; α (N+)=2.05×10 ⁻⁷ <i>22</i> α (N)=2.05×10 ⁻⁷ <i>22</i>
		543.14 <i>14</i>	70.5 7	0.0 7/2-	E1(+M2)	<0.014	0.0001770 25	$\alpha(K)=0.0001614\ 23;\ \alpha(L)=1.416\times10^{-5}\ 20;\ \alpha(M)=1.754\times10^{-6}\ 25$ $\alpha(N+)=9.81\times10^{-8}\ 14$ $\alpha(N)=9.81\times10^{-8}\ 14$ B(E1)(W.u.)=0.00025\ 3 $I_{\gamma}:$ unweighted ave of $I\gamma(543\gamma)/(531\gamma)=0.719\ 16$

L

					Adopt	ed Levels, Gamma	as (continued)	
						γ ⁽⁴⁵ Sc) (contin	ued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	δ [#]	$\alpha^{\boldsymbol{\mu}}$	Comments
720.12	5/2-	708.2 ^{<i>a</i>}	3.6 ^{<i>a</i>} 6	12.40 3/2+	(E1(+M2))	<0.024	9.48×10 ⁻⁵ 14	from (p,γ), 0.684 19 from (p,p'γ), and 0.710 10 from Coul. ex. Mult.: from $\gamma(\theta)$ in (α ,p γ) and Coul. ex. δ: from comparison to RUL. $\delta(543\gamma)$ =-0.04 6 from $\gamma(\theta)$ in (A,p γ). B(E1)(W.u.)=0.00025 5 α (K)=8.63×10 ⁻⁵ 13; α (L)=7.56×10 ⁻⁶ 11; α (M)=9.37×10 ⁻⁷ 14; α (N+)=5.25×10 ⁻⁸ 8 α (N)=5.25×10 ⁻⁸ 8 I _γ : other I _γ (708 γ)/I _γ (720 γ)=0.007 3 from Coul. ex.
		720.22 17	100.0 ^{<i>a</i>} 6	0.0 7/2-	M1+E2	+0.14 5	1.54×10 ⁻⁴ 3	Mult.: D+Q from $\gamma(\theta)$ in Coul. ex. $\Delta \pi$ =yes from level scheme. δ: from comparison to RUL. $\delta(708\gamma)$ =+1.2 +14-5 from $\gamma(\theta)$ in Coul. ex. $\alpha(K)$ =0.0001404 25; $\alpha(L)$ =1.234×10 ⁻⁵ 22; $\alpha(M)$ =1.53×10 ⁻⁶ 3; $\alpha(N+)$ =8.59×10 ⁻⁸ 15 $\alpha(N)$ =8.59×10 ⁻⁸ 15 B(M1)(W.u.)=0.271 22; B(E2)(W.u.)=28 20 Mult.: from $\gamma(\theta)$ in (α ,p γ) and Coul. ex. δ : unweighted ay of +0.09 6 from (α ,p γ) and
939.24	1/2+	562.7 ^a	20.9 ^{<i>a</i>} 8	376.50 3/2-	(E1) [@]		0.0001630 <i>23</i>	
974.38	7/2+	926.8 ^x 4 431.77 <i>11</i>	100.0 ^{xu} 8 17.7 ^b 10	12.40 3/2 ⁺ 543.06 5/2 ⁺	D,E2 M1+E2 ^{&}	-0.24 +12-16	0.00050 7	B(M1)(W.u.)=0.0105 <i>13</i> ; B(E2)(W.u.)=9 9 α (K)=0.00045 6; α (L)=4.0×10 ⁻⁵ 6; α (M)=5.0×10 ⁻⁶ 7; α (N+)=2.8×10 ⁻⁷ 4 α (N)=2 8×10 ⁻⁷ 4
		962.01 <i>11</i>	54.0 ^b 14	12.40 3/2+	E2 ^{<i>c</i>}		0.0001170 <i>17</i>	B(E2)(W.u.)=8.99 $\alpha(K)=0.0001060 \ 15; \ \alpha(L)=9.31\times10^{-6} \ 13;$ $\alpha(M)=1.154\times10^{-6} \ 17$ $\alpha(N+)=6.46\times10^{-8} \ 9$ $\alpha(N)=6.46\times10^{-8} \ 9$
		974.42 15	100.0 ^b 5	0.0 7/2-	E1+M2 ^c	<0.042	4.86×10 ⁻⁵ 7	$\alpha(K) = 4.43 \times 10^{-5} 7; \ \alpha(L) = 3.87 \times 10^{-6} 6;$

L

						Adopted L	evels, Gamn	nas (continued)	
						<u> </u>	(⁴⁵ Sc) (conti	nued)	
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	$\delta^{\#}$	α^{u}	Comments
					<u> </u>				$\begin{array}{l} \alpha(\mathrm{M}) = 4.80 \times 10^{-7} \ 7; \ \alpha(\mathrm{N}+) = 2.70 \times 10^{-8} \ 4 \\ \alpha(\mathrm{N}) = 2.70 \times 10^{-8} \ 4 \\ \mathrm{B(E1)(W.u.)} = 0.000133 \ 12 \\ \delta: \ \text{from comparison to RUL. } \delta(974) = +0.09 \ +17 - 12 \\ \text{from } \gamma(\theta) \ \text{in } (\alpha, \mathrm{p}\gamma) \ \text{and} \ -0.32 \ +6 - 11 \ \text{from } \gamma(\theta) \ \text{in } \\ \mathrm{Coul. \ ex.} \end{array}$
1067.6	3/2-	347.36 ^b 33	31 4	720.12 5	5/2-	(M1(+E2))	+0.04 13	0.00075 6	$ α(K)=0.00068 5; α(L)=6.0×10^{-5} 5; α(M)=7.5×10^{-6} 6; α(N+)=4.2×10^{-7} 3 α(N)=4.2×10^{-7} 3 B(M1)(W.u.)=0.43 12; B(E2)(W.u.)=15 +100-15 Mult.: D(+Q) from γ(θ) in (α,pγ). Δπ=no from level scheme.$
		691.11 ^b 49	100 <i>10</i>	376.50 3	3/2-	M1+E2 ^{&}	-0.11 5	1.67×10 ⁻⁴ 3	B(M1)(W.u.)=0.17 5; B(E2)(W.u.)=12 12 α (K)=0.000152 3; α (L)=1.338×10 ⁻⁵ 23; α (M)=1.66×10 ⁻⁶ 3; α (N+)=9.31×10 ⁻⁸ 16 α (N)=9.31×10 ⁻⁸ 16
		1067	4.1 8	0.0 7	7/2-	(E2) ^d		9.06×10 ⁻⁵ 13	B(E2)(W.u.)=4.7 <i>14</i> α (K)=8.24×10 ⁻⁵ <i>12</i> ; α (L)=7.23×10 ⁻⁶ <i>11</i> ; α (M)=8.96×10 ⁻⁷ <i>13</i> ; α (N+)=5.02×10 ⁻⁸ 7 α (N)=5.02×10 ⁻⁸ 7
1236.70	11/2-	1237.07 20	100	0.0 7	7/2-	E2 ^c		8.00×10 ⁻⁵ 12	B(E2)(W.u.)=11.4 7 α (K)=5.86×10 ⁻⁵ 9; α (L)=5.14×10 ⁻⁶ 8; α (M)=6.37×10 ⁻⁷ 9; α (N+)=1.558×10 ⁻⁵ 23 α (N)=3.58×10 ⁻⁸ 5; α (IPF)=1.554×10 ⁻⁵ 22
1303.18	3/2+	760.2 ^b 7 926.8 ^{xb} 5	100 <i>14</i> 45 ^{<i>xb</i>}	543.06 5 376.50 3	5/2+ 3/2 ⁻	D+Q ^{&} (E1) [@]		5.36×10 ⁻⁵ 8	δ: -0.27 15 or -2.0 6 from γ(θ) in (α,pγ). B(E1)(W.u.)=6.0×10 ⁻⁵ +12-19 α(K)=4.88×10 ⁻⁵ 7; α(L)=4.27×10 ⁻⁶ 6; α(M)=5.29×10 ⁻⁷ 8; α(N+)=2.97×10 ⁻⁸ 5 α(N)=2.97×10 ⁻⁸ 5
1354 29	(11/2 ⁻)	1289.6 ^b 8	74 14	12.40 3	3/2+	(E2) <i>d</i>		8.54×10 ⁻⁵ 12	$\begin{aligned} &\alpha(\text{K}) = 5.35 \times 10^{-5} \ 8; \ \alpha(\text{L}) = 4.69 \times 10^{-6} \ 7; \\ &\alpha(\text{M}) = 5.81 \times 10^{-7} \ 9; \ \alpha(\text{N}+) = 2.66 \times 10^{-5} \ 5 \\ &\alpha(\text{N}) = 3.26 \times 10^{-8} \ 5; \ \alpha(\text{IPF}) = 2.66 \times 10^{-5} \ 5 \\ &\text{B}(\text{E2})(\text{W.u.}) = 2.5 \ +7-9 \\ &\text{I}_{\gamma}: \text{ unweighted ave of } I_{\gamma}(1290\gamma)/I_{\gamma}(760\gamma) = 0.56 \ 12 \\ &\text{from } (p,\gamma) \text{ and } 1.1 \ 4 \text{ from Coul. ex.} \end{aligned}$
1408.87	$(7/2)^{-}$	$688.9^{b} 5$ $1032.4^{x} 4$	7.4 <i>12</i> 4.9 ^x 5	720.12 5 376.50 3	5/2 ⁻ 3/2 ⁻	D,E2 (E2) ^{<i>d</i>}		9.80×10 ⁻⁵ 14	I_{γ} : from Coulomb excitation. α (K)=8.92×10 ⁻⁵ 13; α(L)=7.83×10 ⁻⁶ 11;

From ENSDF

						Adopted Leve	ls, Gammas (cont	inued)	
						$\gamma(^{45}S)$	Sc) (continued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	$\delta^{\#}$	$\alpha^{\boldsymbol{\mu}}$	Comments
1408.87	(7/2)-	1408.6 5	100.0 5	0.0	7/2-	M1+E2	-2.62 62	1.03×10 ⁻⁴ 2	$\alpha(M)=9.70\times10^{-7} \ 14; \ \alpha(N+)=5.43\times10^{-8} \ 8$ $\alpha(N)=5.43\times10^{-8} \ 8$ $B(E2)(W.u.)=8.6 \ +11-12$ $I_{\gamma}: \text{ from Coulomb excitation.}$ $B(M1)(W.u.)=0.0035 \ 15; \ B(E2)(W.u.)=32$ +3-4
									$\alpha(K)=4.35 \times 10^{-3} \ 8; \ \alpha(L)=3.81 \times 10^{-6} \ 7; \alpha(M)=4.72 \times 10^{-7} \ 9; \ \alpha(N+)=5.51 \times 10^{-5} \ 14 \alpha(N)=2.65 \times 10^{-8} \ 5; \ \alpha(IPF)=5.51 \times 10^{-5} \ 14 I_{\gamma}: \ from \ Coulomb \ excitation. Mult.: \ from \ \gamma(\theta) \ in \ Coul. \ ex. \ and \ Coul. \ ex. \delta: \ from \ \gamma(\theta) \ in \ Coul. \ ex. \ \delta=+0.05 + 13 - 9 \ if J=7/2 \ or \ -0.9 \ 4 \ if \ J=5/2 \ in \ (\alpha, p\gamma) discrepant.$
1433.49	9/2+	197.53 ^{by} 29	4 ^{<i>b</i>}	1236.70	11/2-	(E1) ^J		0.00306 5	B(E1)(W.u.)=0.0005 3 α (K)=0.00279 4; α (L)=0.000245 4; α (M)=3.02×10 ⁻⁵ 5; α (N+)=1.674×10 ⁻⁶ 25 (A))=1.674×10 ⁻⁶ 25
		459.06 17	27 ^b 8	974.38	7/2+	M1+E2 ^{&}	-0.24 6	4.32×10 ⁻⁴ 19	$\alpha(N)=1.674\times10^{-7} 25$ B(M1)(W.u.)=0.011 7; B(E2)(W.u.)=8 6 $\alpha(K)=0.000393 17; \alpha(L)=3.46\times10^{-5} 15;$ $\alpha(M)=4.29\times10^{-6} 19; \alpha(N+)=2.40\times10^{-7} 10$ (A) = 2.40×10^{-7} 10
		890.9 8	100 ^b 13	543.06	5/2+	E2(+M3) ^C	+0.03 6	1.42×10 ⁻⁴ 4	$\begin{aligned} &\alpha(N) = 2.40 \times 10^{-7} I0 \\ &B(E2)(W.u.) = 20 I1 \\ &\alpha(K) = 0.000129 3; \ \alpha(L) = 1.13 \times 10^{-5} 3; \\ &\alpha(M) = 1.41 \times 10^{-6} 4; \ \alpha(N+) = 7.86 \times 10^{-8} I9 \\ &\alpha(N) = 7.86 \times 10^{-8} I9 \end{aligned}$
		1435.4 16	17.0 ^b 19	0.0	7/2-	(E1(+M2))	-0.11 +20-24	2.37×10 ⁻⁴ 15	$ α(K)=2.3×10^{-5} 5; α(L)=2.0×10^{-6} 4; $ $α(M)=2.4×10^{-7} 5; α(N+)=0.000212 20$ $α(N)=1.4×10^{-8} 3; α(IPF)=0.000212 20$ B(E1)(W.u.)=6.E-6 3; B(M2)↓=0.15 +56-15 Mult.: D(+Q) from γ(θ) in (α,pγ). Δπ=yes from level scheme.
1472.5?	$(7/2^+)$	752 ^y 1 1474 ^y 2		720.12	5/2 ⁻ 7/2 ⁻				E_{γ} : from $(n,n'\gamma)$. E_{γ} : from $(n,n'\gamma)$.
1556.2	(3/2)-	488.5 ^{<i>a</i>} 10	100 11	1067.6	3/2-	(M1) ^{gh}		0.000348 5	B(M1)(W.u.)=0.54 +18-25 α (K)=0.000316 5; α (L)=2.78×10 ⁻⁵ 4;

I

						Adopted L	evels, Gamn	nas (continued)	
						$\underline{\gamma}$	(⁴⁵ Sc) (conti	nued)	
E _i (level)	J_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ [#]	$\alpha^{\boldsymbol{\mu}}$	Comments
					. <u> </u>				$\alpha(M)=3.45\times10^{-6} 5; \ \alpha(N+)=1.93\times10^{-7} 3$ $\alpha(N)=1.93\times10^{-7} 3$
1556.2	(3/2)-	616.3 ^y	8.9 16	939.24	1/2+	(E1) ^{<i>f</i>}		0.0001310 <i>19</i>	B(E1)(W.u.)=0.00058 +21-28 α (K)=0.0001188 17; α (L)=1.041×10 ⁻⁵ 15; α (M)=1.290×10 ⁻⁶ 18 α (N+)=7.22×10 ⁻⁸ 11 α (N)=7.22×10 ⁻⁸ 11
		1013.8 ^{ay}	<20 ^a	543.06	5/2+				
		1179.02 ^y	5.7 12	376.50	3/2-	D,E2			
1662.0	9/2-	253.8 ^{by} 5	13 ⁰ 3	1408.87	(7/2)-	M1		0.001550 22	B(M1)(W.u.)=1.2 4 α (K)=0.001411 21; α (L)=0.0001253 19; α (M)=1.553×10 ⁻⁵ 23 α (N+)=8.65×10 ⁻⁷ 13 α (N)=8.65×10 ⁻⁷ 13
		425.1 3	19 ^b 4	1236.70	11/2-	(M1(+E2))	-0.03 13	4.73×10 ⁻⁴ 22	α(K)=0.000430 20; α(L)=3.80×10-5 17; α(M)=4.71×10-6 21; α(N+)=2.63×10-7 12 α(N)=2.63×10-7 12 B(M1)(W.u.)=0.38 10; B(E2)(W.u.)=5 +45-5 Mult.: D(+Q) from γ(θ) in (α,pγ). Δπ=no from level scheme.
		942.0 ^{by} 6	14 ^b 8	720.12	5/2-	(E2) ^d		0.0001230 18	B(E2)(W.u.)=8.E+1 5 $\alpha(K)=0.0001117 \ 16; \ \alpha(L)=9.82\times10^{-6} \ 14;$ $\alpha(M)=1.217\times10^{-6} \ 18$ $\alpha(N+)=6.81\times10^{-8} \ 10$ $\alpha(N)=6.81\times10^{-8} \ 10$
		1662.4 6	100 ^b 5	0.0	7/2-	M1+E2 ^{&}	-0.47 5	1.57×10 ⁻⁴ 3	B(M1)(W.u.)=0.027 4; B(E2)(W.u.)=5.9 13 α (K)=2.88×10 ⁻⁵ 5; α (L)=2.52×10 ⁻⁶ 4; α (M)=3.13×10 ⁻⁷ 5; α (N+)=0.0001249 22 α (N)=1.76×10 ⁻⁸ 3; α (IPF)=0.0001249 22
1800.0	5/2+	497.7 ^{by}	31 ^b	1303.18	3/2+	(M1) ^{<i>h</i>}		0.000334 5	B(M1)(W.u.)=0.34 8 α (K)=0.000303 5; α (L)=2.67×10 ⁻⁵ 4; α (M)=3.31×10 ⁻⁶ 5; α (N+)=1.86×10 ⁻⁷ 3 α (N)=1.86×10 ⁻⁷ 3
		733.3 ^{by}	8 ^b	1067.6	3/2-	(E1) [@]		8.77×10 ⁻⁵ 13	B(E1)(W.u.)=0.00066 <i>16</i> α (K)=7.98×10 ⁻⁵ <i>12</i> ; α (L)=6.99×10 ⁻⁶ <i>10</i> ; α (M)=8.66×10 ⁻⁷ <i>13</i> ; α (N+)=4.85×10 ⁻⁸ <i>7</i> α (N)=4.85×10 ⁻⁸ <i>7</i>

 $^{45}_{21}\mathrm{Sc}_{24}$ -18

					Ad	opted Levels,	Gammas (c	ontinued)	
						γ ⁽⁴⁵ Sc)	(continued)		
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	$\delta^{\#}$	$\alpha^{\boldsymbol{\mu}}$	Comments
1800.0	5/2+	1080.9 ^{by}	8 ^b	720.12	5/2-	(E1) [@]		3.98×10 ⁻⁵ 6	B(E1)(W.u.)=0.00021 5 $\alpha(K)=3.62\times10^{-5}$ 5; $\alpha(L)=3.17\times10^{-6}$ 5; $\alpha(M)=3.93\times10^{-7}$ 6; $\alpha(N+)=2.21\times10^{-8}$ 3 $\alpha(N)=2.21\times10^{-8}$ 3
		1257.2 <mark>b</mark> 5	62 ^a 3	543.06	5/2+	$D+Q^{i}$			δ : 0.0 2 or +1.4 9 from $\gamma(\theta)$ in $(\alpha, p\gamma)$.
		1424.5 ^{by}	23 ^b	376.50	3/2-	(E1) [@]		0.000231 4	B(E1)(W.u.)=0.00026 6 α (K)=2.23×10 ⁻⁵ 4; α (L)=1.95×10 ⁻⁶ 3; α (M)=2.42×10 ⁻⁷ 4; α (N+)=0.000207 3 α (N)=1.358×10 ⁻⁸ 19; α (IPF)=0.000207 3
		1788.1 <mark>b</mark> 6	100 a 3	12.40	$3/2^{+}$	$D+Q^{i}$			δ : -0.20 9 or -1.3 3 from $\gamma(\theta)$ in $(\alpha, p\gamma)$.
		1800.1 ^b 6	22.1 22	0.0	7/2-	(E1) [@]		0.000512 8	B(E1)(W.u.)=0.00012 3 α (K)=1.539×10 ⁻⁵ 22; α (L)=1.344×10 ⁻⁶ 19; α (M)=1.666×10 ⁻⁷ 24 α (N+)=0.000495 7 α (N)=9.38×10 ⁻⁹ 14; α (IPF)=0.000495 7
1900.7		833.45	100	1067.6	3/2-				
1930.6	1/2,3/2,5/2+	991.49	100	939.24	$1/2^{+}$				
1935.5		1935.5° 10	1000	0.0	$7/2^{-}$	D,E2			
1935.5?		1559 ^{by}	1000	376.50	3/2-	D,E2			
2031.2	11/2+	597.4 ^b 5	100	1433.49	9/2+	M1+E2	-0.19 7	2.33×10 ⁻⁴ 7	$ α(K)=0.000212 7; α(L)=1.86×10^{-5} 6; α(M)=2.31×10^{-6} 7; α(N+)=1.29×10^{-7} 4 α(N)=1.29×10^{-7} 4 B(M1)(W.u.)=0.062 +11-14; B(E2)(W.u.)=17 13 Mult.: D+Q from γ(θ) in (α,pγ); ΔJ=1 d+Q or ΔJ=2 Q from DCO in (18O,p2nγ). Ne E1+M2 from δ and comparison to RUL. $
		794.2 ^b 5	12 5	1236.70	11/2-	(E1) [@]		7.37×10 ⁻⁵ 11	$\alpha(K)=6.71\times10^{-5} \ 10; \ \alpha(L)=5.88\times10^{-6} \ 9; \\ \alpha(M)=7.28\times10^{-7} \ 11; \ \alpha(N+)=4.08\times10^{-8} \ 6 \\ \alpha(N)=4.08\times10^{-8} \ 6 \\ B(E1)(W.u.)=8.E-5 \ 4 \\ I_{\gamma}: weighted ave of I\gamma(794\gamma)/I\gamma(597\gamma)=0.15 \ 10 \\ from \ (\alpha,p\gamma) \ and \ 0.10 \ 6 \ from \ (p,p'\gamma).$
		1056.14 ^b 23	98 29	974.38	7/2+	E2(+M3) ^C	<0.0017	9.28×10 ⁻⁵ 13	$\begin{aligned} &\alpha(\mathbf{K}) = 8.44 \times 10^{-5} \ I2; \ \alpha(\mathbf{L}) = 7.41 \times 10^{-6} \ I1; \\ &\alpha(\mathbf{M}) = 9.18 \times 10^{-7} \ I3; \ \alpha(\mathbf{N}+) = 5.15 \times 10^{-8} \ 8 \\ &\alpha(\mathbf{N}) = 5.15 \times 10^{-8} \ 8 \\ &\mathbf{B}(\mathbf{E2})(\mathbf{W}.\mathbf{u}.) = 30 \ I4 \\ &\mathbf{I}_{\gamma}: \text{ unweighted ave of } \mathbf{I}\gamma(1056\gamma)/\mathbf{I}\gamma(597\gamma) = 0.56 \end{aligned}$

L

				A	dopted	Levels, Ga	mmas (conti	inued)	
						$\gamma(^{45}\text{Sc})$ (co	ontinued)		
E _i (level)	${ m J}^{\pi}_i$	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	$\delta^{\#}$	$\alpha^{\boldsymbol{u}}$	Comments
2002.0	5.0	700.000	201	1202.10	2/2+				10 from ²⁸ Si(¹⁹ F,2pγ), ³⁰ Si(¹⁸ O,p2nγ),, 1.54 24 from (α,pγ), and 0.8 5 from (p,p'γ). Other: 1.07 from ³⁰ Si(¹⁸ O,p2nγ). δ: from comparison to RUL. δ (1057γ)=+0.03 3 from γ(θ) in (α,pγ).
2093.0	5/2	788.8^{ay}	$<30^{a}$	1303.18	3/21	$D(10)^{i}$	0.05.20		
		1023.7^{a} 1715.5 ^a	8.4^{a} 24	376.50	$\frac{3}{2}^{-}$	$D(+Q)^{*}$ D.E2	-0.03 20		
		2094.0 10	$100.0^a 24$	0.0	$7/2^{-}$	$D(+Q)^{i}$	-0.05 6		
2106.2	$\leq 7/2$	1038.98	100	1067.6	3/2-				_
2106.3	15/2-	869.57 <i>13</i>	100 ^{<i>a</i>}	1236.70	11/2-	E2		0.0001510 22	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0001371 \ 20; \ \alpha(\mathbf{L}) = 1.206 \times 10^{-5} \ 17; \\ &\alpha(\mathbf{M}) = 1.494 \times 10^{-6} \ 21 \\ &\alpha(\mathbf{N}+) = 8.35 \times 10^{-8} \ 12 \\ &\alpha(\mathbf{N}) = 8.35 \times 10^{-8} \ 12 \\ &\mathbf{B}(\mathbf{E2})(\mathbf{W}.\mathbf{u}.) < 86 \\ &\mathbf{Mult.: from } p\gamma(\theta) \text{ and linear polarization in} \\ &(\alpha, \mathbf{p}\gamma); \ \Delta J = 0 \ d \text{ or } \Delta J = 2 \ Q \ from \ DCO \ in \end{aligned}$
0120 4	2/2 = 5/2	592.24	40.12	1556.0	$(2/2)^{-}$	D			$(^{18}\mathrm{O},\mathrm{p2n}\gamma).$
2138.4	3/2 ,3/2	282.24 2138 29	40 I2 $1.0 \times 10^2 3$	1550.2	(3/2) $7/2^{-}$	D DF2			
2151.0	(1/2,3/2,5/2)	847.4	11.1 23	1303.18	$3/2^+$	D,E2			
		2138.5 ^x	$100^{x} 10$	12.40	$3/2^{+}$	D,E2			
2152.0?		596.4 ^{by}	100 ^b	1556.2	$(3/2)^{-}$				
		1084.0 ⁰	52 ⁰	1067.6	3/2-				
0001	(2.12	1608.8 ^{0 y}	98 ⁰	543.06	5/2+				
2221.8	$(3/2^{-}, 5/2)$	2209.42	100° 16	12.40	3/2*				
2224.2	5/2+ 7/2+	2220.0° 18	4/° 10 56b	0.0	1/2 0/2+				
<i>LLL</i> 4. <i>L</i>	512,112	920.8 ^b	26b	1303 19	7/2 3/2+				
		1504.0^{b}	100 ^b	720.12	5/2 ⁻				
		1001.0	100	720.12	5/2+				
		1681.2 ^b	74 ⁰	543.06	.1/2				
		1681.2 ^b 2212 ^y	74 ⁰	543.06 12.40	$3/2^+$				
		1681.2 ^b 2212 ^y 2224 ^y	740	543.06 12.40 0.0	3/2 ⁺ 3/2 ⁺ 7/2 ⁻				
2288.5	(7/2 ⁻ ,9/2)	1681.2 ^b 2212 ^y 2224 ^y 1049.2 ^b 10	74 ^b 82 ^b	543.06 12.40 0.0 1236.70	$3/2^+$ $3/2^+$ $7/2^-$ $11/2^-$ $7/2^+$	D,E2			
2288.5	(7/2 ⁻ ,9/2)	$ \begin{array}{c} 1681.2^{b} \\ 2212^{y} \\ 2224^{y} \\ 1049.2^{b} 10 \\ 1316.0^{y} 5 \\ 2229 7^{b} 7 \\ \end{array} $	74 ^b 82 ^b 58 11	543.06 12.40 0.0 1236.70 974.38	$3/2^+$ $3/2^-$ $11/2^-$ $7/2^+$ $7/2^-$	D,E2 D,E2			

				Tuop		is, culling	(continue	(d)	
					γ ⁴⁵	Sc) (continue	ed)		
E _i (level)	\mathbf{J}_i^π	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	$\delta^{\#}$	$\alpha^{\boldsymbol{\mu}}$	Comments
									$\alpha(K)=0.000321 5; \alpha(L)=2.83\times10^{-5} 4; \alpha(M)=3.50\times10^{-6} 5; \alpha(N+)=1.95\times10^{-7} 3 \alpha(N)=1.95\times10^{-7} 3$
2303.8	$(5/2^{-})$	1235.8	100 21	1067.6	3/2-	D,E2			
		1926.7	92 19	376.50	3/2-	D,Q			
		2290.7	71 13	12.40	3/2+	(E1) [@]		0.000849 12	B(E1)(W.u.)=0.00020 +8-14 α (K)=1.084×10 ⁻⁵ 16; α (L)=9.46×10 ⁻⁷ 14; α (M)=1.173×10 ⁻⁷ 17 α (N+)=0.000837 12 α (N)=6.60×10 ⁻⁹ 10; α (IPF)=0.000837 12
2321.5	3/2-,5/2,7/2+	2308.8 ^b 13	100^{b} 12	12.40	$3/2^{+}$	D,E2			
		2321.7 <mark>b</mark> 14	45 ^b 12	0.0	7/2-	D,E2			
2341.0	$(7/2^{-})$	931.34 ^{wby} 32	≤100 ^{<i>wb</i>}	1408.87	$(7/2)^{-}$	D			
		1622.5 ^{xy}	42.95 ^x	720.12	5/2-	D,E2			
		2341.6 ⁰ 10	$1.0 \times 10^2 \ 3$	0.0	$7/2^{-}$	D,E2			
2352.2	3/2-,5/2	797.3 J	47 9	1556.2	$(3/2)^{-}$				
		1285.7 <mark>/</mark>	20 4	1067.6	3/2-				
		1632.4 ^J	100 20	720.12	$5/2^{-}$				
		2340.1	56 12	12.40	3/2+				
0.501.0	(1 10+ 0 10 5 10)	2350.4 ⁰ 10	5.4 ⁰ 11	0.0	$7/2^{-}$				
2531.0	$(1/2^+, 3/2, 5/2)$	1227.6	28.6	1303.18	3/2	k			
		1988.1	$100\ 20$ 72\ 14	543.06	$5/2^+$ $3/2^+$	ĸ			
2563 2	13/2+	2510.5 457.5 ^e	12 14 12 ^e	2106.3	$\frac{5}{2}$	$(E1)^{f}$		0 000275 1	$B(E1)(W_{H}) = 0.0011 4$
2303.2	13/2	т <i>э</i> л. <i>э</i>	ΤL	2100.5	15/2	(L1)*		0.000275 +	$\begin{aligned} \alpha(K) = 0.000250 \ 4; \ \alpha(L) = 2.19 \times 10^{-5} \ 3; \\ \alpha(M) = 2.72 \times 10^{-6} \ 4; \\ \alpha(N+) = 1.517 \times 10^{-7} \ 22 \end{aligned}$
		521 7 <mark>0</mark>	2100 11	2021.2	11/2+	D E2			$\alpha(N) = 1.517 \times 10^{-7} 22$
		1129 8 ^{<i>a</i>} 3	100 <i>ae</i>	1433.40	$\frac{11/2}{9/2^+}$	D,E2 F2(+M3)	0.00 4	8 14×10 ⁻⁵ 12	$\alpha(K) = 7.20 \times 10^{-5}$ 11: $\alpha(L) = 6.32 \times 10^{-6}$
		1129.0 5	100	1433.49	9/2	E2(+MI3)	0.00 4	6.14×10 12	$\begin{aligned} & \alpha(\mathbf{N}) = 7.20 \times 10^{-7} \ 11, \ \alpha(\mathbf{L}) = 0.32 \times 10^{-7} \ 12; \\ & \alpha(\mathbf{N}) = 2.22 \times 10^{-6} \ 4 \\ & \alpha(\mathbf{N}) = 4.39 \times 10^{-8} \ 7; \ \alpha(\mathrm{IPF}) = 2.18 \times 10^{-6} \ 4 \\ & \mathrm{B(E2)(W.u.)} = 14 \ 5 \\ & \mathrm{Mult.}, \delta: \ \mathrm{from} \ \gamma(\theta) \ \mathrm{in} \ (\alpha, \mathrm{p\gamma}) \ \mathrm{and} \\ & \mathrm{comparison} \ \mathrm{to} \ \mathrm{RUL.} \ \mathrm{Other} \ \mathrm{possibilities} \end{aligned}$

 ${}^{45}_{21}\mathrm{Sc}_{24}$ -21

I

				Adop	ted Levels,	Gammas (o	continued)	
					$\gamma(^{45}\mathrm{Sc})$	(continued))	
E _i (level)	J_i^{π}	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	$\alpha^{\mathcal{U}}$	Comments
2563.2	13/2+	1325.8 ^a	47 ^{ae}	1236.70	11/2-	(E1)	1.68×10 ⁻⁴ 3	excluded by level scheme. ΔJ=1 d+Q or ΔJ=2 Q from DCO in (18 O,p2nγ). B(E1)(W.u.)=4.8×10 ⁻⁵ 15 α (K)=2.52×10 ⁻⁵ 4; α (L)=2.20×10 ⁻⁶ 3; α (M)=2.73×10 ⁻⁷ 4; α (N+)=0.0001399 20 α (N)=1.533×10 ⁻⁸ 22; α (IPF)=0.0001399 20 Mult.: D,E2 from comparison to RUL. Δ π =yes from level scheme.
2590.0	3/2-,5/2,7/2-	$1032.8^{xby} 4$	$\leq 35^{xb}$	1556.2	$(3/2)^{-}$	D E2		
		1324.3 ^{by} 4 1869.7 ^{by} 15	17^{b} 13	720.12	5/2 5/2 ⁻	D,E2		
		2212.7 <mark>b</mark> 13	100 20	376.50	3/2-	D,E2		
2(01.4	1/2+ 2/2 5/2	2590.0 ^{xy}	$67^{x} 14$	0.0	7/2-	D,E2 ^k		
2601.4	1/2+,3/2,5/2	1045.4	30 6	1556.2	$(3/2)^{-}$	k		
		1534.2 2059.28 ^y 2224.30	$ \begin{array}{r} 100 \ 10 \\ 35 \ 15 \\ 56 \ 12 \\ 1.0 \ 10^2 r 5 \end{array} $	1067.6 543.06 376.50	3/2 $5/2^+$ $3/2^-$	ĸ		
T 9770	(1/2 - 2/2 5/2)	2590.45 ^{xy}	$1.0 \times 10^{2x} 5$	12.40	3/2 ⁺ 5/2 ⁻	k		
2110.1	(1/2, 3/2, 3/2)	2038.0	100 21	376.50	$3/2^{-}$			
2860.7?	$(1/2^-, 3/2, 5/2)$	1558 ^y		1303.18	3/2+			
2895 2	1/2+ 3/2 5/2	2140 ¹ 2352 1 5	100	720.12	$5/2^{-}$ $5/2^{+}$	D F2		
2903.8	$3/2^+, 5/2^+$	1836.4	100 20	1067.6	$3/2^{-}$	D,E2		
2964.0?	(3/2+,5/2+)	2361 1990 ^y 2027 ^y	61 13	543.06 974.38 939.24	5/2 ⁺ 7/2 ⁺ 1/2 ⁺			
2979.8	3/2-	1425 2605.5	100 <i>20</i> 92 <i>20</i>	1556.2 376.50	$(3/2)^{-}$ $3/2^{-}$			
3025.5	1/2-,3/2-	803.5 ^{by} 6 931.34 ^{wby} 32 2305.9	$18^{b} 7$ 5.2 ^w 10 19 4	2221.8 2093.0 720.12	(3/2 ⁻ ,5/2) 5/2 5/2 ⁻ 2/2 ⁻			
3092.0	1/2+,3/2,5/2	2048.75 ² 2024.4 2550.3	100 21	1067.6 543.06	$3/2^{-}$ $3/2^{-}$ $5/2^{+}$			
3104	(3/2,5/2)	3104 ^y	100	0.0	$7/2^{-}$			
5104	7/0+	1082.6	100	2031.2	$11/2^{+}$			

From ENSDF

 $^{45}_{21}\mathrm{Se}_{24}$ -22

l

					Adopted	l Levels, Gam	mas (contin	ued)	
						γ ⁽⁴⁵ Sc) (cont	inued)		
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	$\delta^{\#}$	$\alpha^{\boldsymbol{u}}$	Comments
3294.9	15/2+	732 ¹	100 ^{<i>l</i>} 13	2563.2	13/2+	M1,E2 ^m		0.00019 5	$\alpha(K)=0.00018 \ 5; \ \alpha(L)=1.6\times10^{-5} \ 4; \\ \alpha(M)=1.9\times10^{-6} \ 5; \ \alpha(N+)=1.1\times10^{-7} \\ 3 \ \alpha(N+)=1.1\times10^{-7} $
		1263 ^{<i>l</i>}	62 ¹ 25	2031.2	11/2+	(E2) ⁿ		8.23×10 ⁻⁵ 12	$\alpha(N)=1.1\times10^{-7} 3$ $\alpha(K)=5.60\times10^{-5} 8; \alpha(L)=4.91\times10^{-6} 7; \alpha(M)=6.09\times10^{-7} 9; \alpha(N+)=2.08\times10^{-5} 3$ $\alpha(N)=3.42\times10^{-8} 5; \alpha(IPF)=2.08\times10^{-5} 3$
3363 5	$(15/2^{-})$	1257 <mark>6</mark>		2106.3	15/2-				B(E2)(W.u.)=15 7
5505.5	(15/2)	2009 ^{ey} 2127 ^e		1354.2? 1236.70	$(11/2^{-})$ $11/2^{-}$				
3366.4 3457	$(5/2)^-$ $(5/2)^-$	1957.9 2216 ^y	100	1408.87 1236.70	(7/2) ⁻ 11/2 ⁻				Placement of 2216 γ or 2520 γ is suspect since they feed 11/2 ⁻ and 1/2 ⁺ states, respectively
2462.1		2520 ^y	100	939.24	$1/2^+$				See comment on 2216y.
3462.1 3487.4	5/2 ,//2 3/2 ⁻	3085.5 2766.8 3110.7	100 89 <i>19</i> 74 <i>16</i>	376.50 720.12 376.50	3/2 5/2 ⁻ 3/2 ⁻				
3525.2	3/2-,5/2	3488.3 1969.6	43 9	1556.2	$(3/2)^{-}$				
3548.5	1/2+,3/2,5/2,7/2+	3525 3005.4 3536.4	100 20 100 20 75 16	0.0 543.06 12.40	$5/2^+$ $3/2^+$				
3569.6	17/2-	1463.3 ^{<i>l</i>}	100 ¹	2106.3	15/2-	M1,E2 ^m		1.07×10 ⁻⁴ 14	$\alpha(K)=3.8\times10^{-5} \ 3; \ \alpha(L)=3.34\times10^{-6} \ 25; \ \alpha(M)=4.1\times10^{-7} \ 3; \ \alpha(N+)=6.5\times10^{-5}$
									$\alpha(N)=2.33\times10^{-8}$ 17; $\alpha(IPF)=6.5\times10^{-5}$ 11
3584	$1/2, 3/2, 5/2^+$	2645	100	939.24	$1/2^+$	$M1(+E2)^{p}$	-0.002 [±]	0.00022 14	$\mathbf{D}(\mathbf{M}_{1})(\mathbf{M}_{2}) = 1.5.6$
3692.9	19/2	122.9*	210 /	3309.6	1 //2	M1(+E2)P	<0.003*	0.009 <i>52 14</i>	$\begin{array}{l} \alpha(M1)(W.U.)=1.5 \ o\\ \alpha(K)=0.00846 \ I2; \ \alpha(L)=0.000761 \ II;\\ \alpha(M)=9.42\times10^{-5} \ I4;\\ \alpha(N+)=5.20\times10^{-6} \ 8\\ \alpha(N)=5.20\times10^{-6} \ 8\end{array}$
		1586.56 ¹ 20	100 ⁰	2106.3	15/2-	E2		0.0001610 23	$\alpha(K) = 3.47 \times 10^{-5} 5; \ \alpha(L) = 3.04 \times 10^{-6} 5; \ \alpha(M) = 3.77 \times 10^{-7} 6;$

					Ad	opted Levels, G	ammas (co	ntinued)	
						$\gamma(^{45}\text{Sc})$ ((continued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [‡]	$\delta^{\#}$	$\alpha^{\boldsymbol{\mu}}$	Comments
3714.3	1/2,3/2,5/2	1621.8 ^x	64^{xl} 14	2093.0	5/2	D,E2			
3722.3		2158.6 3345.7	100° 20 100	1556.2 376.50	(3/2) $3/2^{-}$	D,E2			
3882	$(1/2^{-})$	2580 3507	79 100	1303.18	$3/2^+$ $3/2^-$	g			
4055.4	17/2+	760 ^e	9 ^e	3294.9	15/2+	D,E2			
		1492.5 ^e	78 ^e	2563.2	13/2+	(E2)		0.0001280 <i>18</i>	$\begin{aligned} &\alpha(K)=3.93\times10^{-5} \ 6; \ \alpha(L)=3.44\times10^{-6} \ 5; \\ &\alpha(M)=4.26\times10^{-7} \ 6; \ \alpha(N+)=8.53\times10^{-5} \ 12 \\ &\alpha(N)=2.40\times10^{-8} \ 4; \ \alpha(IPF)=8.53\times10^{-5} \ 12 \\ &B(E2)(W.u.)=12 \ 3 \\ &Mult.: \ \Delta J=0 \ d \ or \ \Delta J=2 \ Q \ from \ DCO \ in \\ &(^{18}O,p2n\gamma). \ Ne \ M2 \ from \ comparison \ to \ RUL. \end{aligned}$
		1949 ^e	100 ^e	2106.3	15/2-	(E1(+M2)) ^q	≤0.086 [‡]	0.000618 9	B(E1)(W.u.)=0.00014 3 α (K)=1.375×10 ⁻⁵ 21; α (L)=1.200×10 ⁻⁶ 19; α (M)=1.488×10 ⁻⁷ 23 α (N+)=0.000602 9 α (N)=8.38×10 ⁻⁹ 13; α (IPE)=0.000602 9
4084.9	$(1/2^-, 3/2^-)$	3146.5 10	100	939.24	$1/2^{+}$	L			
4505	1/2-,3/2-	1398 3436	100 64	3104 1067.6	(3/2,5/2) 3/2 ⁻	κ			
4662 4895 4	(1/2,3/2) $19/2^+$	4298 840 ^e	$100 \\ 20^{e}$	376.50 4055 4	$3/2^{-}$ $17/2^{+}$	D E2			
1075.1	17/2	1600.5 ^e	100 ^e	3294.9	15/2+	(E2) ⁿ		0.0001670 24	B(E2)(W.u.)=22 5 $\alpha(K)=3.41\times10^{-5}$ 5; $\alpha(L)=2.99\times10^{-6}$ 5; $\alpha(M)=3.70\times10^{-7}$ 6; $\alpha(N+)=0.0001291$ 18 $\alpha(M)=2.08\times10^{-8}$ 2; $\alpha(ME)=0.0001201$ 18
5418.3	23/2-	1725.5 ^l	100 ^{<i>l</i>}	3692.9	19/2-	(E2) ^{<i>n</i>}		0.000216 4	B(E2)(W.u.)=2.9 4 $\alpha(K)=2.94 \times 10^{-5} 5; \alpha(L)=2.58 \times 10^{-6} 4;$ $\alpha(M)=3.19 \times 10^{-7} 5; \alpha(N+)=0.000184 3$
5516.4	(19/2 ⁻)	1824 ^e		3692.9	19/2-				$\alpha(N)=1.80\times10^{\circ}$ 3; $\alpha(IPF)=0.000184$ 3

 $^{45}_{21}\mathrm{Sc}_{24}$ -24

					Add	opted Levels, G	ammas (cor	ntinued)	
						γ ⁽⁴⁵ Sc) (6	continued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult. [‡]	δ#	α ^u	Comments
5516.4	(19/2 ⁻)	1946 ^e 2153 ^e 3410 ^e		3569.6 3363.5 2106.3	17/2 ⁻ (15/2 ⁻) 15/2 ⁻				
5696.8	21/2+	1641 ^e	100 ^e	4055.4	17/2+	(E2)		0.000182 3	$\alpha(K)=3.25\times10^{-5} 5; \alpha(L)=2.84\times10^{-6} 4;$ $\alpha(M)=3.52\times10^{-7} 5; \alpha(N+)=0.0001467 21$ $\alpha(N)=1.98\times10^{-8} 3; \alpha(IPF)=0.0001467 21$ B(E2)(W.u.)=10 5 Mult.: $\Delta J=0$ d or $\Delta J=2$ Q from DCO in ($^{18}O,p2n\gamma$). Ne M2 from comparison to RUL. $\Delta \pi=2$ from level scheme.
		2004 ^e	78 ^e	3692.9	19/2-	(E1(+M2)) ^q	≤0.094 [‡]	0.000656 10	$\alpha(K)=1.322\times10^{-5}\ 21;\ \alpha(L)=1.153\times10^{-6}\ 18;\ \alpha(M)=1.430\times10^{-7}\ 23$ $\alpha(N+)=0.000641\ 10$ $\alpha(N)=8.05\times10^{-9}\ 13;\ \alpha(IPF)=0.000641\ 10$ B(E1)(W.u.)=0.00010\ 6
5710.6	(21/2 ⁻)	292.5 ^e 2016.3 ^e		5418.3 3692.9	23/2 ⁻ 19/2 ⁻	D+Q,Q			Mult.: $\Delta J=1 d+Q$ or $\Delta J=2 Q$ from DCO in $({}^{18}O,p2n\gamma)$.
6683.9	23/2+	2142 ^e 988 ^e 1789 ^e	16 ^e 100 ^e	3569.6 5696.8 4895.4	17/2 ⁻ 21/2 ⁺ 19/2 ⁺	D,E2 (E2) ⁿ		0.000243 4	B(E2)(W.u.)=16 4 α (K)=2.75×10 ⁻⁵ 4; α (L)=2.40×10 ⁻⁶ 4; α (M)=2.98×10 ⁻⁷ 5; α (N+)=0.000213 3 α (N)=1.676×10 ⁻⁸ 24; α (PE)=0.000213 3
7612.6	(23/2 ⁻)	1902 ^e 2096 ^e 2194 ^e 3920 ^e		5710.6 5516.4 5418.3 3692.9	(21/2 ⁻) (19/2 ⁻) 23/2 ⁻ 19/2 ⁻				$u(1) = 1.070 \times 10^{-2.7}, u(111) = 0.000215.5$
7696.3? 7711.0		1986 <i>ey</i> 3991 <i>w</i> 4225 <i>w</i> 4577 <i>w</i> 4614 <i>w</i> 4731 <i>w</i> 4809 <i>w</i> 4818 <i>w</i> 4934 <i>w</i> 5111 <i>w</i>	17 ^w 4 3.3 ^w 7 6.7 ^w 14 3.3 ^w 7 17 ^w 4 3.3 ^w 7 6.7 ^w 14 23 ^w 5 3.3 ^w 7	5710.6 3722.3 3487.4 3136.3 3104 2979.8 2903.8 2895.2 2778.7 2601.4	(21/2 ⁻) 3/2 ⁻ 5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻ (3/2,5/2) 3/2 ⁺ 3/2 ⁺ ,5/2 ⁺ 1/2 ⁺ ,3/2,5/2 (1/2 ⁻ ,3/2,5/2) 1/2 ⁺ ,3/2,5/2				

$\gamma(^{45}Sc)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
7711.0	—	5123 ^w	$10.0^{W} 20$	2590.0	3/25/2.7/2-
		5182 ^w	$10.0^{W} 20$	2531.0	$(1/2^+, 3/2, 5/2)$
		5361 ^w	3.3 ^w 7	2352.2	3/25/2
		5410 ^w	6.7 ^w 14	2303.8	$(5/2^{-})$
		5562 ^{wy}	3.3 ^w 7	2152.0?	
		5562 ^{wy}	3.3 ^w 7	2151.0	(1/2, 3/2, 5/2)
		5621 ^w	6.7 ^w 14	2093.0	5/2
		6410 ^w	3.3 ^w 7	1303.18	3/2+
		6645 ^w	10.0 ^w 20	1067.6	3/2-
		6774 ^w	100 ^w 20	939.24	1/2+
		6992 ^w	33 ^w 7	720.12	5/2-
		7170 ^w	$20^{W} 4$	543.06	5/2+
		7336 ^w	17 ^w 4	376.50	3/2-
		7700 ^w	23 ^w 5	12.40	3/2+
7712.5		3991 ^w	17 ^w 4	3722.3	
		4225 ^w	3.3 ^w 7	3487.4	3/2-
		4577 ^w	6.7 ^w 14	3136.3	5/2-,7/2-,9/2-
		4614 ^w	3.3 ^w 7	3104	(3/2,5/2)
		4731 ^w	17 ^w 4	2979.8	3/2-
		4809 ^w	3.3 ^w 7	2903.8	3/2+,5/2+
		4818 ^w	6.7 ^w 14	2895.2	1/2+,3/2,5/2
		4934 ^w	23 ^w 5	2778.7	$(1/2^{-}, 3/2, 5/2)$
		5111 ^w	3.3 ^w 7	2601.4	1/2+,3/2,5/2
		5123 ^w	10.0 ^w 20	2590.0	3/2-,5/2,7/2-
		5182 ^w	$10.0^{W} 20$	2531.0	$(1/2^+, 3/2, 5/2)$
		5361 ^w	3.3 ^w 7	2352.2	3/2-,5/2
		5410 ^w	6.7 ^w 14	2303.8	$(5/2^{-})$
		5562 ^{wy}	3.3 ^w 7	2152.0?	
		5562 ^{wy}	3.3 ^w 7	2151.0	(1/2, 3/2, 5/2)
		5621 W	6.7 ^w 14	2093.0	5/2
		6410 ^w	3.3 ^w 7	1303.18	3/2+
		6645 ^w	10.0 20	1067.6	3/2-
		6774 w	100 20	939.24	1/2+
		6992 ^w	33 ^w 7	720.12	5/2-
		7170 ^w	$20^{W} 4$	543.06	5/2+
		7336 ^w	17 ° 4	376.50	3/2-
		7700 ^w	23 ^w 5	12.40	3/2+
7714.9		3991 <mark>w</mark>	17 ^w 4	3722.3	

$\gamma(^{45}Sc)$ (continued)

E_i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]
7714.9		4225 ^w	3.3^{W} 7	3487.4	3/2-	
		4577 ^w	6.7 ^w 14	3136.3	$5/2^{-}.7/2^{-}.9/2^{-}$	
		4614 ^w	3.3 ^w 7	3104	(3/2,5/2)	
		4731 ^w	$17^{w} 4$	2979.8	3/2-	
		4809 ^w	3.3 ^w 7	2903.8	$3/2^+, 5/2^+$	
		4818 ^w	6.7 ^w 14	2895.2	$1/2^+, 3/2, 5/2$	
		4934 ^w	23 ^w 5	2778.7	$(1/2^{-}, 3/2, 5/2)$	
		5111 ^w	3.3 ^w 7	2601.4	$1/2^+, 3/2, 5/2$	
		5123 ^w	10.0 ^w 20	2590.0	3/2-,5/2,7/2-	
		5182 ^w	10.0 ^w 20	2531.0	$(1/2^+, 3/2, 5/2)$	
		5361 ^w	3.3 ^w 7	2352.2	3/2-,5/2	
		5410 ^w	6.7 ^w 14	2303.8	$(5/2^{-})$	
		5562 ^{wy}	3.3 ^w 7	2152.0?	., ,	
		5562 ^{wy}	3.3 ^w 7	2151.0	(1/2, 3/2, 5/2)	
		5621 ^w	6.7 ^w 14	2093.0	5/2	
		6410 ^w	3.3 ^w 7	1303.18	3/2+	
		6645 ^w	10.0 ^w 20	1067.6	3/2-	
		6774 ^w	100 ^w 20	939.24	$1/2^{+}$	
		6992 ^w	33 ^w 7	720.12	5/2-	
		7170 ^w	$20^{w} 4$	543.06	5/2+	
		7336 ^w	17 ^w 4	376.50	3/2-	
		7700^{W}	23 ^w 5	12.40	3/2+	
7725.0	$3/2^{(-)}$	3742 ^y	20 4	3982	$3/2^+, 5/2^+$	
		4003	33 7	3722.3		
		4359	27 6	3366.4	$(5/2)^{-}$	
		4589	20 4	3136.3	5/2-,7/2-,9/2-	
		4633	27 6	3092.0	1/2+,3/2,5/2	
		4830	27 6	2895.2	1/2+,3/2,5/2	
		4947	53 11	2778.7	$(1/2^{-}, 3/2, 5/2)$	
		5124	20 4	2601.4	1/2+,3/2,5/2	
		5135	33 7	2590.0	3/2-,5/2,7/2-	
		5194	33 7	2531.0	$(1/2^+, 3/2, 5/2)$	
		5422	60 12	2303.8	$(5/2^{-})$	a
		5574 ^{wy}	20 ° 4	2152.0?		8
		5574 ^{wy}	20 ^w 4	2151.0	(1/2,3/2,5/2)	8
		5633	40.8	2093.0	5/2	
		6170	3.3 7	1556.2	$(3/2)^{-}$	
		6422	3.3 7	1303.18	3/2+	
		6658	20.4	1067.6	3/2-	

					Add	opted Leve	els, Gammas (continued)	
						$\gamma(^{45}$	Sc) (continued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]		Comments
7725.0	$3/2^{(-)}$	6786	20 4	939.24	1/2+	$D+Q^{r}$	δ : +0.03 6 or -1.7 1.	
		7005	40 8	720.12	5/2-	D+Q ^r	δ : -0.08 5 or -2.6 12.	
		7182	100 20	543.06	5/2+	D+Q ^r	δ : -0.13 +3-1 or -2.9 +4-3.	
		7348	60 12	376.50	3/2-			
		7713	6.7 14	12.40	3/2+			
7774.4	$3/2^{(+)}$	3690	7.1 15	4084.9	$(1/2^{-},3/2^{-})$			
		3911 ^y	21 5	3864.0?				
		4061	36 7	3714.3	1/2,3/2,5/2			
		4191	14 3	3584	1/2,3/2,5/2+			
		4226	14 3	3548.5	$1/2^+, 3/2, 5/2, 7/2^+$			
		4250	14.5	3323.2 2497 4	3/2 ,3/2 2/2-			
		4207	21 3	3467.4	5/2 5/0- 7/0-			
		4313	7115	3366.4	$(5/2)^{-}$			
		4664	14.3	3111.2	$7/2^+$			
		4676 ^y	21.5	3104	(3/2.5/2)			
		4683	7.1 15	3092.0	$1/2^+, 3/2, 5/2$			
		4749	43 9	3025.5	1/2-,3/2-			
		4793	14 <i>3</i>	2979.8	3/2-			
		4811 ^y	7.1 15	2964.0?	$(3/2^+, 5/2^+)$			
		4873	36 7	2903.8	3/2+,5/2+			
		4880	7.1 15	2895.2	1/2+,3/2,5/2			
		4996	7.1 15	2778.7	$(1/2^{-}, 3/2, 5/2)$			
		5173	29 6	2601.4	1/2+,3/2,5/2			
		5244	14.3 15	2531.0	$(1/2^+, 3/2, 5/2)$			
		5422	5/12	2352.2	3/2 ,5/2			
		5472 5624WV	21.5	2303.8	(5/2)	g		
		5624 ^{WV}	$29^{11} 0$	2152.0?	(1/2) 2/2 5/2)	g		
		5682	29 0	2131.0	(1/2, 3/2, 3/2) 5/2	0		
		5975	7115	1800.0	5/2 5/2+			
		6219	21.5	1556.2	$(3/2)^{-}$			
		6471	7.1 15	1303.18	3/2+			
		6707	21 5	1067.6	3/2-	D+O ^r	δ : +2.4 4 or +0.14 6.	
		6836	100 22	939.24	1/2+	D+Q ^r	δ : +0.03 2 or -1.9 <i>I</i> .	
		7054	29 6	720.12	5/2-	D+Q ^r	δ : -0.4 <i>1</i> or -1.6 4.	
		7231	29 6	543.06	5/2+	D+Q ^r	δ : -0.07 +5-3 or -3.50 +4-5.	
		7398	29 6	376.50	3/2-	-		
		7762	29 6	12.40	3/2+	D+Q ^r	δ : -0.19 6 or >+12.	
7929.3	$25/2^+$	1245 ^e		6683.9	23/2+			

From ENSDF

	Adopted Levels, Gammas (continued)											
	γ ⁽⁴⁵ Sc) (continued)											
E _i (level)	J^{π}_i	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ [#]	$\alpha^{\mathcal{U}}$	Comments			
7929.3	25/2+	2231.5 ^e	32 ^e	5696.8	21/2+	(E2) ^d		0.000447 7	B(E2)(W.u.)>3.0 α (K)=1.83×10 ⁻⁵ 3; α (L)=1.603×10 ⁻⁶ 23; α (M)=1.99×10 ⁻⁷ 3; α (N+)=0.000427 6 α (N)=1.119×10 ⁻⁸ 16; α (IPE)=0.000427 6			
8003.4 8111.6	19/2 ⁻ to 27/2 ⁻ 3/2 ⁻	2511 ^e 2585 ^e 3439 3611	100 ^e 100 ^e 59 9 55 9	5418.3 5418.3 4662 4505	23/2 ⁻ 23/2 ⁻ (1/2,3/2) 1/2 ⁻ ,3/2 ⁻	D+Q,E2 ^{t} D,E2 D+Q ^{r} (M1+E2) ^{s}	$+0.07 \ 3$ -0.06 3	0.000913 <i>13</i>	B(M1)(W.u.)=0.16 6; $B(E2)(W.u.)=0.12 + 13 - 12$			
		0011			-1- ,01-	($\begin{aligned} \alpha(\text{K}) = 8.11 \times 10^{-6} \ I2; \ \alpha(\text{L}) = 7.07 \times 10^{-7} \ I0; \\ \alpha(\text{M}) = 8.77 \times 10^{-8} \ I3 \\ \alpha(\text{N}+) = 0.000904 \ I3 \\ \alpha(\text{N}) = 4.95 \times 10^{-9} \ 7; \ \alpha(\text{IPE}) = 0.000904 \ I3 \end{aligned}$			
		4230	100 14	3882	(1/2 ⁻)	(M1+E2) ^{\$}	+0.09 2	0.001120 16	B(M1)(W.u.)=0.18 7; B(E2)(W.u.)=0.23 10 $\alpha(K)=6.45\times10^{-6} 9; \alpha(L)=5.62\times10^{-7} 8;$ $\alpha(M)=6.97\times10^{-8} 10; \alpha(N+)=0.001113 16$ $\alpha(N)=3.93\times10^{-9} 6; \alpha(PE)=0.0011113 16$			
		6021 7174	91 <i>14</i> 23	2093.0 939.24	5/2 1/2 ⁺	D+Q ^r [E1]	-0.09 4		B(E1)(W.u.)=0.00021 7 $\alpha(IPF)=2.554\times10^{-3} 36$			
		7393 7739 8101	27 41 50 9	720.12 376.50 12.40	5/2 ⁻ 3/2 ⁻ 3/2 ⁺	(E1+M2)	-0.03 3		B(E1)(W.u.)=0.00032 <i>12</i> ; B(M2)(W.u.)=0.020 +41-20 Mult.: D+Q from $\gamma(\theta)$ in (p,γ). Δπ=yes from level scheme			
8127.7	3/2-	3456 3628	77 12 92 16	4662 4505	(1/2,3/2) 1/2 ⁻ ,3/2 ⁻	D+Q ^r (M1+E2) ^s	+0.03 3 0.00 3	0.000918 13	B(M1)(W.u.)=0.21 7 α (K)=8.05×10 ⁻⁶ 12; α (L)=7.02×10 ⁻⁷ 10; α (M)=8.71×10 ⁻⁸ 13 α (N+)=0.009099 13 α (N+)=0.009099 13			
		4247	100 <i>16</i>	3882	(1/2 ⁻)	(M1+E2) ^{\$}	+0.05 2	0.001130 16	$\alpha(N)=4.91\times10^{-7} 7; \ \alpha(IPF)=0.000909 \ I3$ B(M1)(W.u.)=0.14 5; B(E2)(W.u.)=0.05 5 $\alpha(K)=6.41\times10^{-6} 9; \ \alpha(L)=5.59\times10^{-7} 8;$ $\alpha(M)=6.93\times10^{-8} \ I0; \ \alpha(N+)=0.001118 \ I6$ $\alpha(N)=3.91\times10^{-9} \ 6; \ \alpha(IPF)=0.001118 \ I6$			
		6038	69 12	2093.0	5/2	D+Q ^r	+0.06 5		a(ii) 5.51/10 0, a(iii)=0.00111010			
		7410 7587	8 23	720.12 543.06	5/2 ⁻ 5/2 ⁺	[E1]			B(E1)(W.u.)=0.00014 4 α (IPF)=2.628×10 ⁻³ 37			
		8118	15	12.40	3/2+	[E1]			$B(E1)(W.u.)=7.4 \times 10^{-5} 22$			

From ENSDF

I

						Adopted Lev	vels, Gammas (continued)
						$\gamma(4)$	⁴⁵ Sc) (continued)
						<u>/(</u>	
E_i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [‡]	Comments
8305.3?		2595 ^{ey}		5710.6	$(21/2^{-})$		
8364.4	$25/2^+$	1680.5 ^e	100 ^e	6683.9	$23/2^+$	D+Q,E2 ^{<i>t</i>}	
		2946 ^e		5418.3	23/2-		
8436.1	3/2-,5/2	7895	100	543.06	5/2+		
		8060	58	376.50	3/2-		
		8424	42	12.40	3/2+		
0.471.0	5/0+	8436	42	0.0	7/2-		
84/1.3	5/21	/406	69 50	1067.6	$\frac{3}{2}$		
		7498	59 62	9/4.38	1/2+		
		7030	23	939.24 5/3.06	$\frac{1/2}{5/2^+}$		
		8095	36	376 50	$3/2^{-}$		
		8459	100	12.40	$3/2^+$		
		8471	33	0.0	7/2-		
8475.8	$(3/2)^{-}$	6135	18	2341.0	(7/2 ⁻)	[E2]	$\Gamma_{\gamma} = 0.011 \text{ eV}; \text{ B(E2)}(\text{W.u.}) = 0.165$
		7408	82	1067.6	3/2-		$\alpha(\Pi \Gamma) = 1.775 \times 10^{-12} \text{ J}$
		7536	73	939.24	$\frac{3}{2}$ 1/2 ⁺	IE11	$\Gamma_{\gamma} = 0.051 \text{ eV}$ $\Gamma_{\gamma} = 0.045 \text{ eV}$ B(E1)(W µ) = 0.000123
		1000	10	<i>))).</i> 21	1/2		α (IPF)=2.620×10 ⁻³ 37
		7755	34	720.12	5/2-		$\Gamma_{v} = 0.021 \text{ eV}$
		7933	100	543.06	5/2+	[E1]	$\Gamma_{\gamma} = 0.062 \text{ eV}; \text{ B(E1)(W.u.)} = 0.000146$
							α (IPF)=2.698×10 ⁻³ 38
		8099	37	376.50	3/2-		$\Gamma_{\gamma} = 0.023 \text{ eV}$
		8463	95	12.40	3/2+	[E1]	$\Gamma_{\gamma} = 0.059 \text{ eV}; B(E1)(W.u.) = 0.000114$
8484.4	$(3/2)^{-}$	7417	100	1067.6	3/2-		Γ_{γ} =0.025 eV
		7941	40	543.06	5/2+	[E1]	$\Gamma_{\gamma} = 0.010 \text{ eV}; \text{ B(E1)}(\text{W.u.}) = 2.34 \times 10^{-5}$
							α (IPF)=2.699×10 ⁻³ 38
		8472	16	12.40	3/2+	[E1]	$\Gamma_{\gamma} = 0.004 \text{ eV}; \text{ B(E1)(W.u.)} = 7.7 \times 10^{-6}$
8491.9	3/2-	7772	94	720.12	5/2-		
		8115	100	376.50	3/2-		$\Gamma_{\gamma}=0.15 \text{ eV} 5$
04077	2/2-	8491 5042	39	0.0	1/2	[E2]	$1_{\gamma} = 0.06 \text{ eV } 2$; B(E2)(W.u.)=0.18 6
8497.7	5/2	5042 5472	<11	3437 2025 5	(3/2) 1/2 = 2/2 =		
		5535V	<11 14	2064.02	$\frac{1}{2}, \frac{3}{2}$		
		5500 ^y	14	2904.01	(3/2, 3/2) $3/2^+ 5/2^+$		
		5637 <mark>9</mark>	11	2860 7?	$(1/2^{-} 3/2 5/2)$		
		6147 ^y	11	2352.2	$3/2^{-}.5/2$		
		6157 ^y	37	2341.0	$(7/2^{-})$	(E2) ^{<i>d</i>}	Γ_{γ} =0.039 eV; B(E2)(W.u.)=0.58
		6343 ^y	4	2151.0	(1/2,3/2,5/2)		$\alpha(\text{IPF}) = 1.781 \times 10^{-5} 25$

 $^{45}_{21}\mathrm{Sc}_{24}$ -30

L

From ENSDF

 $^{45}_{21}\mathrm{Sc}_{24}$ -30

						Adopted	Levels, Gamma	s (continued)
							$\gamma(^{45}Sc)$ (continu	ued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [‡]	δ#	Comments
8497.7	3/2-	6943	32	1556.2	$(3/2)^{-}$	$D(+Q)^{r}$		
		7196	25	1303.18	3/2+	(E1(+M2))	-0.5 +5-2	B(E1)(W.u.)= $5.8 \times 10^{-5} 24$; B(M2)(W.u.)= $1.3 + 21 - 13$ α (IPF)= $2.35 \times 10^{-3} 21$ Mult : D : O from $\alpha(0)$ in (n a) π -was from level scheme
		7430	41	1067.6	3/2-			$\Gamma_{\nu}=0.043 \text{ eV}$
		7529 ^y 5	25 3	974.38	7/2+	[M2]		B'(M2)(W.u.)=5.2 $\alpha(IPF)=1.589\times10^{-3} 23$
								Mult.: B(M2)(W.u.) exceeds RUL(M1) by a factor of five.
		7561 ^y	22	939.24	1/2+	(E1(+M2))	+0.10 +17-8	B(E1)(W.u.)= 5.5×10^{-5} ; B(M2)(W.u.)= $0.04 + 15 - 4$ α (IPF)= 2.614×10^{-3} 70
		7777	100	720.12	5/2-			Mult.: D+Q from $\gamma(\theta)$ in (p, γ). π =yes from level scheme. $\Gamma = 0.105 \text{ eV}$
		7954	39	543.06	5/2 ⁺	[E1]		$\Gamma_{\gamma} = 0.041 \text{ eV}; \text{ B(E1)(W.u.)} = 9.5 \times 10^{-5}$
								α (IPF)=2.702×10 ⁻³ 38
		8121	83	376.50	3/2-			$\Gamma_{\gamma}=0.087 \text{ eV}$
		8485	29	12.40	3/2+	D+Q'		$\Gamma_{\gamma} = 0.030 \text{ eV}$ $\delta = -0.3 \pm 5 - 0 \text{ or } -2.4 \pm 8 - 14$
8503.3	3/2-	4783 <mark>)</mark>	<3	3722.3				00.5 + 5 - 0.01 - 2.4 + 6 - 17.
	- 1	5027 ^y	<3	3475	$3/2^+, 5/2^+$			
		5477 <mark>У</mark>	<3	3025.5	$1/2^{-}, 3/2^{-}$			
		6152 ^y	18	2352.2	$3/2^{-}, 5/2$			
		6163 ^y	14	2341.0	(7/2 ⁻)	(E2) ^d		Γ_{γ} =0.039 eV; B(E2)(W.u.)=0.572 α (IPF)=1.782×10 ⁻³ 25
		6946 ^y	<3	1556.2	$(3/2)^{-}$			
		7436	10	1067.6	3/2-			$\Gamma_{\gamma}=0.043 \text{ eV}$
		7564	100	939.24	1/2+	(E1+M2)		Mult.: D+Q from $\gamma(\theta)$ in (p, γ). $\Delta \pi$ =yes from level scheme. δ : -0.10 +3-7 or -1.7 +3-4.
		7783	38	720.12	5/2-			$\Gamma_{\gamma}=0.105 \text{ eV}$
		7960	14	543.06	5/2+	[E1]		Γ_{γ} =0.041 eV; B(E1)(W.u.)=9.5×10 ⁻⁵ α (IPF)=2.703×10 ⁻³ 38
		8126	19	376.50	3/2-			$\Gamma_{\gamma}=0.087 \text{ eV}$
		8491	17	12.40	3/2+	[E1]		$\Gamma_{\gamma}=0.030 \text{ eV}; \text{ B(E1)(W.u.)}=5.7\times10^{-5}$
		8504 ^y	74	0.0	$7/2^{-}$	[E2]		B(E2)(W.u.)=0.287
8509.5	3/2-	5534 ^y		2979.8	3/2-			
		5765 ^y		2747.0	5/2-,7/2-			
		5910 ^y	21	2601.4	1/2+,3/2,5/2			
		6170 ^y	21	2341.0	$(7/2^{-})$			
		6208 ^y	6	2303.8	$(5/2^{-})$			
		6711 9	29	1800.0	5/2+			

$\gamma(^{45}Sc)$ (continued)

8509.5 $3/2^ 7102^y$ 17 1408.87 $(7/2)^-$ 7208 ^y 61303.18 $3/2^+$ 7444 ^y 331067.6 $3/2^-$ 7537 ^y 2974.38 $7/2^+$ 7572 ^y 46939.24 $1/2^+$ 779210720.12 $5/2^-$ 7968 ^y 12543.06 $5/2^+$ 8135100376.50 $3/2^-$ 84995812.40 $3/2^+$ 8511290.0 $7/2^-$ 8515.9 $3/2^-$ 6175172341.0 $(7/2^-)$ [E2] Γ_{γ} =0.025 eV; B(E2)(W.u.)=0.363	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
8515.9 $3/2^-$ 6175 17 2341.0 (7/2 ⁻) [E2] Γ_{γ} =0.025 eV; B(E2)(W.u.)=0.363	
$\alpha(\text{IPF})=1.785\times10^{-3}\ 25$	
7577 100 939.24 $1/2^+$ (E1) [@] $\Gamma_{x}=0.151 \text{ eV}$; B(E1)(W,u,)=0.000407	
$\alpha(\text{IPF})=2.626 \times 10^{-3} 37$	
7796 19 720.12 $5/2^ \Gamma_{\gamma}=0.029 \text{ eV}$	
8139 14 376.50 $3/2^ \Gamma_{\gamma}=0.021 \text{ eV}$	
8503 2 12.40 3/2 ⁺ [E1] $\Gamma_{\gamma}=0.003 \text{ eV}; \text{ B(E1)(W.u.)}=5.7\times10^{-6}$	
8519.3 3/2 ⁻ 6179 20 2341.0 (7/2 ⁻) [E2] $\Gamma_{\gamma} = 0.019 \text{ eV}; \text{ B(E2)(W.u.)} = 0.275 \\ \alpha(\text{IPF}) = 1.786 \times 10^{-3} 25$	
7799 100 720.12 $5/2^ \Gamma_{\gamma}=0.096 \text{ eV}$	
8142 43 376.50 $3/2^ \Gamma_{\gamma}=0.041 \text{ eV}$	
8507 60 12.40 $3/2^+$ [E1] $\Gamma_{\gamma}=0.058 \text{ eV}$; B(E1)(W.u.)=0.000110	
8528.4 $(3/2)^-$ 7461 56 1067.6 $3/2^ \Gamma_{\gamma}=0.019 \text{ eV}$	
$7808 32 720.12 5/2 \Gamma_{\gamma} = 0.011 \text{ eV}$	
7985 100 543.06 5/2 [E1] $\Gamma_{\gamma}=0.034 \text{ eV}; \text{ B(E1)}(\text{w.u.})=7.8 \times 10^{-3} \text{ a} (\text{IPF})=2.708 \times 10^{-3} \text{ 38}$	
8152 21 376.50 $3/2^ \Gamma_{\gamma}=0.007 \text{ eV}$	
8516 44 12.40 $3/2^+$ [E1] $\Gamma_{\gamma}=0.015 \text{ eV}; \text{ B(E1)(W.u.)}=2.85\times10^{-3}$	
8529.2 (3/2) 6189 100 2341.0 (7/2) [E2] $\Gamma_{\gamma}=0.018 \text{ eV}; \text{ B(E2)(W.u.)}=0.259 \\ \alpha(\text{IPF})=1.788 \times 10^{-3} 25$	
7590 28 939.24 1/2 ⁺ [E1] Γ_{γ} =0.005 eV; B(E1)(W.u.)=1.34×10 ⁻⁵ α (IPF)=2.628×10 ⁻³ 37	
8152 33 376.50 $3/2^ \Gamma_{\gamma}=0.006 \text{ eV}$	
8516 17 12.40 3/2 ⁺ [E1] $\Gamma_{\gamma}^{'}=0.003 \text{ eV}; \text{ B}(\text{E1})(\text{W.u.})=5.7\times10^{-6}$	
8533.1 $3/2^-$ 7466 40 1067.6 $3/2^ \Gamma_{\gamma}=0.021 \text{ eV}$	
7594 17 939.24 1/2 ⁺ [E1] $\Gamma_{\gamma}=0.009 \text{ eV}; \text{ B(E1)}(\text{W.u.})=2.41\times10^{-5}$ $\alpha(\text{IPF})=2.629\times10^{-3} 37$	
7990 100 543.06 5/2 ⁺ [E1] $\Gamma_{\gamma} = 0.052 \text{ eV}; \text{ B(E1)}(\text{W.u.}) = 0.000119 \\ \alpha(\text{IPF}) = 2.709 \times 10^{-3} 38$	

 $^{45}_{21}\mathrm{Sc}_{24}\text{--}32$

$\gamma(^{45}Sc)$ (continued)

E_i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ#	$\alpha^{\boldsymbol{\mathcal{U}}}$	Comments
8543.2	$3/2^{-}$	7476	63	1067.6	$3/2^{-}$				$\Gamma_{\rm v}=0.039~{\rm eV}$
	- 1	7604	100	939.24	$1/2^{+}$	[E1]			$\Gamma_{\gamma} = 0.062 \text{ eV}; \text{ B(E1)(W.u.)} = 0.000165$
									$\alpha(\text{IPF})=2.631\times10^{-3}$ 37
		7823	52	720.12	$5/2^{-}$				$\Gamma_{\gamma} = 0.032 \text{ eV}$
		8000	82	543.06	$5/2^{+}$	[E1]			$\Gamma_{\gamma} = 0.051 \text{ eV}; \text{ B(E1)(W.u.)} = 0.000117$
									α (IPF)=2.711×10 ⁻³ 38
		8166	11	376.50	3/2-				$\Gamma_{\gamma}=0.007 \text{ eV}$
		8530	10	12.40	$3/2^{+}$	[E1]			$\Gamma_{\gamma} = 0.006 \text{ eV}; B(E1)(W.u.) = 1.13 \times 10^{-5}$
8552.7	$(1/2)^{-}$	7485	100	1067.6	$3/2^{-}$				$\Gamma_{\gamma} = 0.031 \text{ eV}$
		7613	35	939.24	$1/2^{+}$	[E1]			$\Gamma_{\gamma} = 0.011 \text{ eV}; B(E1)(W.u.) = 2.92 \times 10^{-5}$
									α (IPF)=2.632×10 ⁻³ 37
		8176	19	376.50	$3/2^{-}$				$\Gamma_{\gamma}=0.006 \text{ eV}$
		8540	45	12.40	$3/2^{+}$	[E1]			$\Gamma_{\gamma} = 0.014 \text{ eV}; B(E1)(W.u.) = 2.63 \times 10^{-5}$
8580.1	$1/2^{-}$	7513	100	1067.6	$3/2^{-}$				$\Gamma_{\gamma} = 0.053 \text{ eV}$
		7641	26	939.24	$1/2^{+}$	[E1]			$\Gamma_{\gamma} = 0.014 \text{ eV}; \text{ B(E1)(W.u.)} = 3.68 \times 10^{-5}$
									α (IPF)=2.637×10 ⁻³ 37
		8567	23	12.40	$3/2^{+}$	[E1]			$\Gamma_{\gamma} = 0.012 \text{ eV}; B(E1)(W.u.) = 2.24 \times 10^{-5}$
8591.4	$(1/2)^{-}$	7524	60	1067.6	3/2-				$\Gamma_{\gamma} = 0.018 \text{ eV}$
		7652	100	939.24	$1/2^{+}$	[E1]			$\Gamma_{\gamma} = 0.030 \text{ eV}; \text{ B(E1)(W.u.)} = 7.8 \times 10^{-5}$
									α (IPF)=2.639×10 ⁻³ 37
		8215	91	376.50	3/2-				$\Gamma_{\gamma} = 0.011 \text{ eV}$
		8579	91	12.40	$3/2^{+}$	[E1]			$\Gamma_{\gamma} = 0.012 \text{ eV}; \text{ B(E1)(W.u.)} = 2.23 \times 10^{-5}$
8606.3	5/2	7633	50	974.38	$7/2^{+}$				
		8230	100	376.50	3/2-				
		8594	91	12.40	$3/2^{+}$				
		8606	91	0.0	7/2-				
8616.1	$1/2^{-}$	7313	12	1303.18	3/2+	[E1]			$\Gamma_{\gamma} = 0.015 \text{ eV}; \text{ B(E1)}(\text{W.u.}) = 4.49 \times 10^{-5}$
									α (IPF)=2.584×10 ⁻³ 37
		8239	100	376.50	3/2-				$\Gamma_{\gamma}=0.125 \text{ eV}$
		8603	36	12.40	3/2+	[E1]			$\Gamma_{\gamma} = 0.045 \text{ eV}; \text{ B(E1)(W.u.)} = 8.3 \times 10^{-5}$
8622.4	$27/2^+$	258 ^e	22 ^e	8364.4	$25/2^+$	M1(+E2) ^{<i>p</i>}	<0.006	0.001490 21	B(M1)(W.u.)=1.24
									$\alpha(K)=0.001358 \ 19; \ \alpha(L)=0.0001205 \ 17; \ \alpha(M)=1.493\times 10^{-5} \ 21$
									α (N+)=8.32×10 ⁻⁷ 12
									$\alpha(N) = 8.32 \times 10^{-7} \ 12$
		693 ^e		7929.3	$25/2^+$				
		1938.5 <mark>e</mark>	100 ^e	6683.9	23/2+	(E2)		0.000310 5	$\alpha(K)=2.36\times10^{-5}$ 4; $\alpha(L)=2.07\times10^{-6}$ 3; $\alpha(M)=2.56\times10^{-7}$ 4; $\alpha(N+)=0.000284$ 4
									$\alpha(N)=1.441\times10^{-8} 21$; $\alpha(IPF)=0.000284 4$

33

 ${}^{45}_{21}\mathrm{Sc}_{24}$ -33

$\gamma(^{45}Sc)$ (continued)

E_i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	Comments
							B(E2)(W.u.)=9.3
							Mult.: $\Delta J=1 d+Q$ or $\Delta J=2 Q$ from DCO in (¹⁸ O,p2n γ). Ne M2 from comparison to RUL. $\Delta J=2$
							from level scheme.
8658.2	$(1/2)^{-}$	7591	38	1067.6	3/2-		Γ_{γ} =0.022 eV
		7719	100	939.24	$1/2^{+}$	[E1]	$\Gamma_{\gamma} = 0.058 \text{ eV}; \text{ B(E1)}(\text{W.u.}) = 0.000148$
							$\alpha(\text{IPF})=2.653\times10^{-3}38$
8664.9	$(1/2)^{-}$	7725	10	939.24	$1/2^{+}$	[E1]	$\Gamma_{\gamma} = 0.006 \text{ eV}; \text{ B(E1)(W.u.)} = 1.53 \times 10^{-5}$
		0000		076.50	2/2-		α (IPF)=2.654×10 ⁻³ 38
		8288	22	376.50	$\frac{3}{2}$	DE 11	$\Gamma_{\gamma} = 0.013 \text{ eV}$
96745	$(1/2)^{-}$	8052	100	12.40	$3/2^{+}$		$\Gamma_{\gamma} = 0.059 \text{ eV}; \text{ B(E1)(W.u.)} = 0.000107$
80/4.5	(1/2)	/3/1	43	1303.18	3/2	[EI]	$1_{\gamma} = 0.018 \text{ eV}; \text{ B(E1)(W.u.)} = 5.5 \times 10^{-5}$
		7607	70	1067.6	3/2-		$u(1PP)=2.390\times 10^{-57}$
		7735	100	939.24	$1/2^+$	[E1]	$\Gamma_{\gamma} = 0.035 \text{ eV}$ $\Gamma_{\nu} = 0.042 \text{ eV}$ · B(E1)(Wu)=0.000106
		1100	100	/////	1/2	[21]	α (IPF)=2.656×10 ⁻³ 37
		8298	33	376.50	$3/2^{-}$		$\Gamma_{\gamma}=0.014 \text{ eV}$
		8662	64	12.40	$3/2^{+}$	[E1]	$\Gamma_{\gamma} = 0.027 \text{ eV}; \text{ B(E1)(W.u.)} = 4.87 \times 10^{-5}$
8696.4	$1/2^{-}$	7629	100	1067.6	3/2-	D,E2	$\Gamma_{\gamma} = 0.137 \text{ eV}$
		7757	13	939.24	$1/2^{+}$	[E1]	$\Gamma_{\gamma} = 0.018 \text{ eV}; \text{ B(E1)(W.u.)} = 4.52 \times 10^{-5}$
							α (IPF)=2.661×10 ⁻³ 38
		8319	31	376.50	3/2-		$\Gamma_{\gamma} = 0.042 \text{ eV}$
		8684	61	12.40	3/2		$\Gamma_{\gamma} = 0.084 \text{ eV}; \text{ B(E1)(W.u.)} = 0.000150$
8711.7	$(1/2)^{-}$	7408	100	1303.18	3/2+	(E1)	$\Gamma_{\gamma}=0.099 \text{ eV}$
							α (IPF)=2.602×10 ⁻³ 37; B(E1)(W.u.)=0.000285
		7772	33	939.24	1/2+	[E1]	$\Gamma_{\gamma} = 0.033 \text{ eV}; \text{ B(E1)(W.u.)} = 8.2 \times 10^{-5}$
		0225	27	276 50	2/2-		α (IPF)=2.004×10 ⁻⁵ 38
		8500 8600	27	12.40	3/2 3/2+	[[]1]	$\Gamma_{\gamma} = 0.027 \text{ eV}$ $\Gamma_{\gamma} = 0.022 \text{ eV}$ $P(E1)/(W_{W}) = 5.70 \times 10^{-5}$
0716 1	$(1/2)^{-}$	0077	32	020.24	3/2 1/2+	(E1)	$\Gamma_{\gamma} = 0.051 \text{ eV}, \text{ D(E1)(W.u.)} = 0.000127$
8/10.1	(1/2)	////	22	939.24	1/2	(EI) -	$\Gamma_{\gamma} = 0.051 \text{ eV}; \text{ B(E1)(W.u.)} = 0.000127$ $\gamma(\text{DE}) = 2.665 \times 10^{-3} 28$
		8339	26	376 50	3/2-		$\alpha(\text{IFF})=2.003\times10^{-58}$
		8703	100	12.40	3/2+	$(\mathbf{F}1)^{\mathbf{@}}$	$\Gamma_{\gamma} = 0.002 \text{ eV}$ $\Gamma_{\gamma} = 0.002 \text{ eV}$ $R(E1)(W_{11}) = 0.000/21$
8735 5	1/2-	7432	100	1303.18	$\frac{3}{2}$	(E1) [F1]	$\Gamma_{\gamma} = 0.257 \text{ eV}, \text{ B(E1)(W.u.)} = 0.000421$ $\Gamma_{\gamma} = 0.056 \text{ eV}; \text{ B(E1)(W.u.)} = 0.000160$
0755.5	1/2	1152	100	1505.10	5/2	[[1]]	α (IPF)=2 606×10 ⁻³ 37
		7668	30	1067.6	$3/2^{-}$		$\Gamma_{\gamma}=0.017 \text{ eV}$
		7796	46	939.24	$1/2^{+}$	[E1]	$\Gamma_{\gamma}^{\prime}=0.026 \text{ eV}; \text{ B(E1)(W.u.)}=6.4\times10^{-5}$
						-	$\alpha(\text{IPF})=2.669\times10^{-3}$ 38
		8359	48	376.50	$3/2^{-}$		Γ_{γ} =0.027 eV
		8723	30	12.40	$3/2^{+}$	[E1]	$\Gamma_{\gamma} = 0.017 \text{ eV}; \text{ B(E1)(W.u.)} = 3.00 \times 10^{-5}$

$\gamma(^{45}Sc)$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	Comments
8749.2	(1/2)-	7446	5	1303.18 3/2+	[E1]	$\Gamma_{\gamma} = 0.034 \text{ eV}; \text{ B(E1)(W.u.)} = 9.7 \times 10^{-5}$
		7810	8	939.24 1/2+	[E1]	$\Gamma_{\gamma} = 0.058 \text{ eV}; \text{ B(E1)}(\text{W.u.}) = 0.000143$ $\alpha(\text{IPF}) = 2.672 \times 10^{-3} \text{ -}38$
8754 5	1/2-	8736 7687	100	$12.40 \ 3/2^+$ 1067.6 $3/2^-$	(E1) [@]	Γ_{γ} =0.706 eV; B(E1)(W.u.)=0.00124 Γ_{γ} =0.026 eV;
0754.5	1/2	7815	5	939.24 1/2 ⁺	[E1]	$\Gamma_{\gamma} = 0.026 \text{ eV}$ $\Gamma_{\gamma} = 0.008 \text{ eV}$; B(E1)(W.u.)=1.96×10 ⁻⁵ α (JEE)=2.673×10 ⁻³ .28
		8377	9	376.50 3/2-		$\Gamma_{\gamma} = 0.014 \text{ eV}$
		8742	100	12.40 3/2+	(E1) [@]	$\Gamma_{\gamma} = 0.164 \text{ eV}; B(E1)(W.u.) = 0.000288$
8766.3	$1/2^{-}$	7462	100	1303.18 3/2+	(E1) [@]	Γ_{γ} =0.319 eV; B(E1)(W.u.)=0.000900 α (IPF)=2.610×10 ⁻³ 37
		7699	28	1067.6 3/2-	-	Γ_{γ} =0.089 eV
		7827	91	939.24 1/2+	(E1) [@]	Γ_{γ} =0.290 eV; B(E1)(W.u.)=0.00071 α (IPF)=2.676×10 ⁻³ 38
		8389	56	376.50 3/2-	D,E2	Γ_{γ} =0.179 eV
		8753	34	$12.40 \ 3/2^+$	[E1]	Γ_{γ} =0.108 eV; B(E1)(W.u.)=0.000189
8794.8	1/2-	7491	100	1303.18 3/2+	(E1) [@]	Γ_{γ} =0.345 eV; B(E1)(W.u.)=0.00096 α (IPF)=2.614×10 ⁻³ 37
		7727	11	1067.6 3/2-		Γ_{γ} =0.037 eV
		7855	4	939.24 1/2+	[E1]	Γ_{γ} =0.013 eV; B(E1)(W.u.)=3.14×10 ⁻⁵ α (IPF)=2.682×10 ⁻³ 38
		8417	3	376.50 3/2-		Γ_{γ} =0.012 eV
		8781	2	12.40 3/2+	[E1]	$\Gamma_{\gamma} = 0.007 \text{ eV}; \text{ B(E1)(W.u.)} = 1.21 \times 10^{-5}$
8807.5	1/2-	7503	100	1303.18 3/2+	(E1) [@]	Γ_{γ} =0.120 eV; B(E1)(W.u.)=0.000333 α (IPF)=2.616×10 ⁻³ 37
		7867	22	939.24 1/2+		Γ_{γ} =0.026 eV
		8794	42	12.40 3/2+	[E1]	$\Gamma_{\gamma} = 0.051 \text{ eV}; \text{ B(E1)(W.u.)} = 8.8 \times 10^{-5}$
8813.9	$(1/2)^{-}$	8800	100	12.40 3/2+	(E1) [@]	Γ_{γ} =0.805 eV; B(E1)(W.u.)=0.00138
8824.7	(1/2)-	7521	100	1303.18 3/2+	[E1]	$\Gamma_{\gamma} = 0.067 \text{ eV}; \text{ B(E1)(W.u.)} = 0.000185$ $\alpha(\text{IPF}) = 2.618 \times 10^{-3} 37$
		7757	96	1067.6 3/2-		Γ_{γ} =0.064 eV
		7885	46	939.24 1/2+	[E1]	Γ_{γ} =0.031 eV; B(E1)(W.u.)=7.4×10 ⁻⁵ α (IPF)=2.688×10 ⁻³ 38
		8447	40	376.50 3/2-		$\Gamma_{\gamma} = 0.027 \text{ eV}$
		8811	79	12.40 3/2+	[E1]	Γ_{γ} =0.053 eV; B(E1)(W.u.)=9.1×10 ⁻⁵
8838.2	1/2-	7898	100	939.24 1/2+	(E1) [@]	Γ_{γ} =0.209 eV; B(E1)(W.u.)=0.000497 α (IPF)=2.691×10 ⁻³ 38

35

$\gamma(^{45}Sc)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	Comments
8838.2	$1/2^{-}$	8825	18	12.40	$3/2^{+}$	[E1]	$\Gamma_{\gamma} = 0.037 \text{ eV}; \text{ B(E1)(W,u,)} = 6.3 \times 10^{-5}$
8844.4	$1/2^{-}$	8467	46	376.50	$3/2^{-}$		$\Gamma_{\gamma}=0.006 \text{ eV}$
		8832	100	12.40	$3/2^{+}$	[E1]	$\Gamma_{\gamma} = 0.013 \text{ eV}; \text{ B(E1)(W.u.)} = 2.21 \times 10^{-5}$
8862.8	$1/2^{-}$	7559	100	1303.18	$3/2^{+}$	(E1) [@]	$\Gamma_{\gamma} = 0.065 \text{ eV}; B(E1)(W.u.) = 0.000176$
	7				- /		α (IPF)=2.624×10 ⁻³ 37
		7795	48	1067.6	$3/2^{-}$		$\Gamma_{\gamma}=0.031 \text{ eV}$
		8486	91	376.50	3/2-		$\Gamma_{\gamma} = 0.059 \text{ eV}$
		8850	57	12.40	$3/2^{+}$	[E1]	$\Gamma_{\gamma} = 0.037 \text{ eV}; \text{ B(E1)(W.u.)} = 6.3 \times 10^{-5}$
8870.5	$1/2^{-}$	7567	100	1303.18	$3/2^{+}$	(E1) [@]	$\Gamma_{\gamma} = 0.115 \text{ eV}; \text{ B(E1)(W.u.)} = 0.000311$
							α (IPF)=2.625×10 ⁻³ 37
		7803	30	1067.6	$3/2^{-}$		Γ_{γ} =0.035 eV
		7932	65	939.24	$1/2^{+}$	[E1]	$\Gamma_{\gamma} = 0.075 \text{ eV}; \text{ B(E1)}(\text{W.u.}) = 0.000176$
							α (IPF)=2.697×10 ⁻³ 38
		8494	64	376.50	3/2-		$\Gamma_{\gamma}=0.074 \text{ eV}$
		8858	16	12.40	3/2+	[E1]	$\Gamma_{\gamma} = 0.018 \text{ eV}; \text{ B(E1)(W.u.)} = 3.04 \times 10^{-5}$
8885.7	$1/2^{-}$	7582	14	1303.18	3/2+	[E1]	$\Gamma_{\gamma} = 0.024 \text{ eV}; \text{ B(E1)(W.u.)} = 6.5 \times 10^{-3}$
		0072	100	12.40	2/2+	(F) 1 1	α (IPF)=2.627×10 ⁻³ 37
0000 /	1/2-	88/3	100	12.40	3/2 -		$\Gamma_{\gamma} = 0.167 \text{ eV}; B(E1)(W.u.) = 0.000280$
0000.4	1/2	1385	100	1505.18	5/2		$\Gamma_{\gamma} = 0.006 \text{ eV}$; $B(E1)(W.u.) = 0.000250$ $\alpha(IDE) = 2.628 \times 10^{-3} 27$
		70/0	0/	030 24	$1/2^{+}$	(F1)	$\alpha(1PF) = 2.020 \times 10^{-5} \text{ S/}$ $\Gamma = 0.083 \text{ eV} \cdot \text{B}(\text{E1})(\text{W} \text{ n}) = 0.000104$
		1949	74	939.2 4	1/2		$\alpha_{\gamma} = 0.005 \text{ eV}, \text{ D(E1)}(\text{w.u.}) = 0.000194$ $\alpha_{\gamma} = 0.000194$
		8511	92	376.50	$3/2^{-}$		$\Gamma_{\rm v}=0.081~{\rm eV}$
		8875	10	12.40	$3/2^+$	[E1]	$\Gamma_{\gamma} = 0.009 \text{ eV}$: B(E1)(W.u.)=1.51×10 ⁻⁵
8891.7	$1/2^{-}$	7588	12	1303.18	$3/2^+$	[E1]	$\Gamma_{\gamma} = 0.016 \text{ eV}; \text{ B(E1)(W.u.)} = 4.29 \times 10^{-5}$
	7				- /		α (IPF)=2.628×10 ⁻³ 37
		7824	50	1067.6	$3/2^{-}$		$\Gamma_{\gamma}=0.070 \text{ eV}$
		7952	38	939.24	$1/2^{+}$	[E1]	$\Gamma_{\gamma} = 0.053 \text{ eV}; \text{ B(E1)(W.u.)} = 0.000124$
							α (IPF)=2.701×10 ⁻³ 38
		8515	100	376.50	3/2-		$\Gamma_{\gamma}=0.139 \text{ eV}$
0000 0	1 /2-	8879	45	12.40	3/2+	[E1]	$\Gamma_{\gamma} = 0.062 \text{ eV}; \text{ B(E1)(W.u.)} = 0.000104$
8908.2	1/2	7841	12	1067.6	3/2		$\Gamma_{\gamma} = 0.038 \text{ eV}$
		8531	100	3/6.50	$\frac{3}{2}$	D,E2	$\Gamma_{\gamma} = 0.309 \text{ eV}$
8017.2	1/2-	8895 7612	14	12.40	$\frac{3}{2}$		$\Gamma_{\gamma} = 0.042 \text{ eV}; B(E1)(W.U.) = 7.0X10^{-5}$
0917.2	1/2	/015	17	1303.16	5/2		$\Gamma_{\gamma} = 0.079 \text{ eV}, \text{ B(E1)(W.u.)} = 0.000210$ $\alpha(\text{IDE}) = 2.632 \times 10^{-3} 37$
		7978	11	939 24	$1/2^{+}$	[E1]	$\Gamma_{\rm r} = 0.049 \text{ eV} \cdot \text{B}(\text{E1})(\text{W} \text{ n}) = 0.000113$
		1710	11	757.24	±/ -	[[]]]	α (IPF)=2.707×10 ⁻³ 38
		8540	7	376.50	$3/2^{-}$		$\Gamma_{\gamma}=0.033 \text{ eV}$
			-		'		,

36

 $^{45}_{21}\mathrm{Sc}_{24}$ -36

$\gamma(^{45}Sc)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	Comments
8917.2	$1/2^{-}$	8904	100	12.40	$3/2^{+}$	(E1) [@]	$\Gamma_{\gamma} = 0.454 \text{ eV}; B(E1)(W.u.) = 0.00075$
8935.0	$1/2^{-}$	7631	39	1303.18	$3/2^{+}$	[E1]	$\Gamma_{\gamma} = 0.028 \text{ eV}; B(E1)(W.u.) = 7.4 \times 10^{-5}$
	,				,		α (IPF)=2.635×10 ⁻³ 37
		7995	100	939.24	$1/2^{+}$	[E1]	$\Gamma_{\gamma} = 0.072 \text{ eV}; B(E1)(W.u.) = 0.000165$
							α (IPF)=2.710×10 ⁻³ 38
		8922	7	12.40	$3/2^{+}$	[E1]	Γ_{γ} =0.005 eV; B(E1)(W.u.)=8.3×10 ⁻⁶
8947.7	$(1/2)^{-}$	7644	100	1303.18	$3/2^{+}$	(E1) [@]	$\Gamma_{\gamma} = 0.307 \text{ eV}; B(E1)(W.u.) = 0.00081$
					- 1		$\alpha(\text{IPF})=2.638\times10^{-3}$ 37
		8571	3	376.50	$3/2^{-}$		$\Gamma_{\gamma}=0.009 \text{ eV}$
		8935	13	12.40	$3/2^{+}$	[E1]	$\Gamma_{\gamma} = 0.040 \text{ eV}; \text{ B(E1)(W.u.)} = 6.6 \times 10^{-5}$
8948.9	$(1/2)^{-}$	7645	92	1303.18	$3/2^{+}$	[E1]	$\Gamma_{\gamma} = 0.023 \text{ eV}; \text{ B(E1)(W.u.)} = 6.0 \times 10^{-5}$
							$\alpha(\text{IPF})=2.638 \times 10^{-3} 37$
		7881	68	1067.6	$3/2^{-}$		$\Gamma_{\gamma}=0.017 \text{ eV}$
		8572	100	376.50	3/2-		$\Gamma_{\gamma} = 0.025 \text{ eV}$
		8936	52	12.40	$3/2^{+}$	[E1]	$\Gamma_{\gamma} = 0.013 \text{ eV}; \text{ B(E1)(W.u.)} = 2.14 \times 10^{-5}$
8961.2	$1/2^{-}$	8584	35	376.50	$3/2^{-}$		
		8948	100	12.40	$3/2^{+}$	[E1]	$\Gamma_{\gamma} = 0.183 \text{ eV}; \text{ B}(\text{E1})(\text{W.u.}) = 0.000299$
8965.3	$1/2^{-}$	8026	58	939.24	1/2+	[E1]	$\Gamma_{\gamma} = 0.106 \text{ eV}; \text{ B(E1)(W.u.)} = 0.000240$
		8588	9	376.50	$3/2^{-}$	02.13	$\Gamma_{\gamma} = 0.017 \text{ eV}$
0075 5	(05/0-)	8952	100	12.40	3/2	[EI]	Γ_{γ} =0.183 eV; B(E1)(W.u.)=0.000299
89/5.5	(25/2)	3337	10	5418.5	$\frac{23}{2}$	07.11	$E = 0.042$ eV: $B(E1)(W_{\rm eff}) = 0.000111$
6965.5	1/2	10/9	19	1505.18	5/2		$1_{\gamma} = 0.045 \text{ eV}$; $B(E1)(\text{w.u.}) = 0.000111$ $\gamma/\text{IDE} = 2.645 \times 10^{-3} \cdot 27$
		7015	14	1067.6	3/2-		$u(1PF) = 2.043 \times 10^{-5}$
		8043	51	939.24	$\frac{3}{2}$ $\frac{1}{2^+}$	[F1]	$\Gamma_{\gamma} = 0.055 \text{ eV}$ $\Gamma_{\gamma} = 0.117 \text{ eV} \text{ B}(\text{F1})(\text{W}_{\text{H}}) = 0.000264$
		8605	100	376.50	$3/2^{-}$	D.E2	$\Gamma_{\gamma} = 0.230 \text{ eV}$
8996 3	$1/2^{-}$	7693	20	1303 18	$3/2^+$	IE11	$\Gamma_{\rm v} = 0.025 \text{ eV} \cdot \text{B(E1)(W m)} = 6.4 \times 10^{-5}$
0770.5	1/2	1075	20	1000.10	5/2	[21]	α (IPF)=2.647×10 ⁻³ .37
		8057	100	939.24	$1/2^{+}$	[E1]	$\Gamma_{\rm v}=0.123 \text{ eV}; \text{ B(E1)(W,u,)}=0.000276$
		8984	22	12.40	3/2+	IE1	$\Gamma_{\rm v}=0.027$ eV; B(E1)(W.u.)=4.36×10 ⁻⁵
9017.0	$(1/2)^{-}$	8077	11	939.24	$1/2^{+}$	IE11	$\Gamma_{\rm v}=0.013 \text{ eV}$: B(E1)(W.u.)=2.89×10 ⁻⁵
	(-/-/	9004	100	12.40	$3/2^+$	[E1]	$\Gamma_{\gamma} = 0.120 \text{ eV}; \text{ B(E1)(W.u.)} = 0.000193$
9164.0?		3746 ^{ey}		5418.3	$\frac{1}{23/2^{-}}$		
9481.1?		4063 ^{ey}		5418.3	$23/2^{-}$		
10001.1?		1379 ^{ey}		8622.4	$27/2^+$		
10007.6	$(27/2^{-})$	2395 ^e		7612.6	$(23/2^{-})$		
		4589 ^e		5418.3	23/2-		
10169.4	$(29/2^+)$	1547 ^e		8622.4	27/2+		
		2239.5 ^e		7929.3	$25/2^+$		

From ENSDF

$\gamma(^{45}Sc)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult. [‡]	Comments				
10299.2?		4881 ^{ey}	5418.3	$23/2^{-}$						
10936.2?		5518 ^{ey}	5418.3	$23/2^{-}$						
11021.9	$(31/2^+)$	852 ^e	10169.4	$(29/2^+)$						
		2400 ^e	8622.4	$27/2^{+}$	D+Q,Q	Mult.: $\Delta J=1 d+Q$ or $\Delta J=2 Q$ from DCO in (¹⁸ O,p2n γ).				
11201.2	$(29/2^+)$	2578.5 <mark>e</mark>	8622.4	$27/2^+$						
		2837 ^e	8364.4	$25/2^+$						
12142.2?		3520 ^{ey}	8622.4	$27/2^+$						
12592.7	$(31/2^{-})$	2585 ^e	10007.6	$(27/2^{-})$						
13372.5	$(31/2^+)$	3203 ^e	10169.4	$(29/2^+)$						
13674.6?		2473 ^{ey}	11201.2	$(29/2^+)$						
14516.8	$(33/2^+)$	3495 ^e	11021.9	$(31/2^+)$						
		4347 ^e	10169.4	$(29/2^+)$						
15313.3?	(0 - (0 -)	5144 ^{ey}	10169.4	$(29/2^+)$						
15/02.8	$(35/2^{-})$	3110	12592.7	$(31/2^{-})$						
16462.2	$(35/2^{+})$	2786 ^{cy}	136/4.6?	(21/2+)						
		5440°	11021.9	$(31/2^{+})$						
±.										
! From (p	[†] From (p,γ) , except as noted. I γ are given as relative photon branchings from each level.									
* From co	[‡] From comparison to RUL, except as noted.									
# From γ	(θ) in $(\alpha, p\gamma)$	$()$ for $E_x < 7$	MeV and ((p,γ) for E	_x >7 MeV,	except as noted.				
[@] D,E2 fr	om compar	ison to RU	L. $\Delta \pi = yes$	from the lo	evel schem	е.				
& D+Q fro	om $\gamma(\theta)$ in	$(\alpha, p\gamma)$. Ne	E1+M2 fro	om δ and c	comparison	to RUL.				
^a From (a	<i>κ</i> ,pγ).									
^b From (p	$(p,p'\gamma)$.									
^c From γ	(θ) and line	ar polariza	tion in (α, \mathbf{p})	γ).						
^d D,E2 fr	^d D.E2 from comparison to RUL. $\Delta J=2$ from level scheme.									
^e From ³⁰	$e^{-E_{\rm rom} 30} Si(^{18}\Omega, p_2n_{\rm V})$									
^f D from	f D from comparison to RUL $\Lambda \pi$ =ves from level scheme									
g Isotronic $\gamma(\theta)$ in (n γ)										
^h D from comparison to RUL, $\Delta \pi$ =no from level scheme.										
i From $\gamma(\theta)$ in $(\alpha, p\gamma)$.										
^j See discussion in 1992Bu01 on the 2341 and 2352 states.										
^k Anisotropic $\gamma(\theta)$ in (p, $\gamma)$.										
l From (19 E.2pv).										
^{<i>m</i>} AI-1 d+O or AI-2 O from DCO in (¹⁸ O p2py). Ne M2 from comparison to RIII : Ne E1+M2 from large DCO and small δ from comparison to RIII										

^{*m*} $\Delta J=1$ d+Q or $\Delta J=2$ Q from DCO in (¹⁰O,p2n γ). Ne M2 from comparison to KUL; Ne E1+N2 from large ^{*n*} $\Delta J=0$ d or $\Delta J=2$ Q from DCO in (¹⁸O,p2n γ). Ne M2 from comparison to RUL. $\Delta J=2$ from level scheme.

$\gamma(^{45}Sc)$ (continued)

- ^o Mean of $I\gamma(123\gamma)/I\gamma(1586\gamma) = 68/472$ from ³⁰Si(¹⁸O,p2n γ) and $I\gamma(122.9\gamma)/I\gamma(1586.2\gamma) = 8$ 1/29 2 from ²⁸Si(¹⁹F,2p γ), ³⁰Si(¹⁸O,p2n γ),...
- p $\Delta J=1$ d+Q or $\Delta J=2$ Q from DCO in ($^{18}O,p2n\gamma$). M1 from comparison to RUL.
- $^{q}\Delta J=1 d+Q$ or $\Delta J=2 Q$ from DCO in (¹⁸O,p2n γ). Ne M2 from comparison to RUL. $\Delta \pi$ =yes from level scheme.

^{*r*} From $\gamma(\theta)$ in (p, γ).

- ^s D+Q from $\gamma(\theta)$ in (p, γ). $\Delta \pi$ =no from level scheme.
- ^t $\Delta J=1$ d+Q or $\Delta J=2$ Q from DCO in (¹⁸O,p2n γ). Ne M2 from comparison to RUL.
- ^{*u*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*v*} Multiply placed.

- ^w Multiply placed with undivided intensity.
- ^x Multiply placed with intensity suitably divided.
- ^y Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{45}_{21}{\rm Sc}_{24}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 ${}^{45}_{21}{
m Sc}_{24}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 ${}^{45}_{21}{
m Sc}_{24}$

stable

Adopted Levels, Gammas Legend Level Scheme (continued) Intensities: Relative photon branching from each level $--- \rightarrow \gamma$ Decay (Uncertain) みゃしゃくやっかっくや £\$ 3/2-8509.5 505 3/2-8503.3 400 eV 40 1 1 1 1 3/2-8497.7 80 eV 15 i ī I I 3722.3 1 3/2+,5/2+ 3475 ¥ ------ $(5/2)^{-}$ 3457 Ì. 1 1 1 1/2-,3/2-3025.5 1 i Ý T I 1 1 T 1 I I I I I II 2979.8 3/2-(3/2+,5/2+) i 1.1 1 1 _2964.0 - |- |--i i .|_ | _|-3/2+,5/2+ 2903.8 ÷ ------1--1---|--|-| | | |--- |-- +-| | | | 1 1 $(1/2^-, 3/2, 5/2)$ _2860.7 - |-- |-T. 5/2-,7/2-2747.0 i. iii i i i i i 1/2+,3/2,5/2 1 2601.4 i 🖵 i i 3/2-,5/2 Т I. 1 1 2352.2 Ń $(7/2^{-})$ i i i ¥ 2341.0 31 fs 7 -<u>| - | - | - | - | - |</u>- |- |-| | | <u>| | | | | ↓</u> 1 | | i. $(5/2^{-})$ T. I. 2303.8 55 fs +35-17 i i i (1/2,3/2,5/2) 2151.0 ¥ 60 fs +17-12 _____ ____ I I 1 I. 5/2+ 1800.0 65 fs 15 1 1 $(3/2)^{-}$ 1556.2 0.28 ps +12-8 Ý T | | | | | | | | | | | **|** I. $(7/2)^{-1}$ 1408.87 257 fs +23-18 ī ï I = I = I_____ 3/2+ 2.3 ps +7-4 1303.18 1 1 1 0.28 ps 6 3/2-1067.6 ¥ 7/2+ 974.38 2.54 ps 23 <u>|</u> 1 ï 1/2+ 939.24 7.3 ps +6-3 ¥ ۲ 1 Т 5/2-720.12 206 fs 16 1 5/2+ 543.06 5.5 ps 6 ¥ 43.3 ps 23 3/2-376.50 3/2+ 12.40 325.8 ms 42 7/2-0.0

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{45}_{21}\mathrm{Sc}_{24}$

Legend

Adopted Levels, Gammas

 ${}^{45}_{21}\mathrm{Sc}_{24}$

 $^{45}_{21}\mathrm{Sc}_{24}$

Legend

٠

γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $^{45}_{21}{
m Sc}_{24}$

Legend

 $--- \rightarrow \gamma$ Decay (Uncertain)

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $^{45}_{21}$ Sc₂₄

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

 $^{45}_{21}{
m Sc}_{24}$

 $^{45}_{21}{\rm Sc}_{24}$

 $^{45}_{21}{
m Sc}_{24}$

Level Scheme (continued)

 $^{45}_{21}\mathrm{Sc}_{24}$

 ${}^{45}_{21}{
m Sc}_{24}$

Band(G): $\pi t_{7/2}^5$, $\alpha = +1/2$ (25/2⁻) 8975.5

 $^{45}_{21}{
m Sc}_{24}$