${}^{45}_{21}\text{Sc}_{24}$

⁴⁸Ti(pol p,α) E=79.2 MeV 1981Bo37

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	T. W. Burrows	NDS 109, 171 (2008)	30-Oct-2007		

Measured $\sigma(\theta)$ and analyzing power; QDDM mag spect, local plane detector (wire helix, scin). FWHM=80-100 keV. Typical polarization=0.75.

⁴⁵Sc Levels

 $E(F),J(\gamma)$ obtained by peak-fitting. Since the analyzing powers were of opposite sign, a very dramatic effect was observed with spin reversal. This effect confirmed the presence of the doublet and aided In locating the peak centroids. $J^{\pi}(4.61 \text{ MeV})=13/2^{-}$ appeared to Be the most likely, but $J^{\pi}=15/2^{+}$ could not Be ruled out. $J^{\pi}(4.69 \text{ MeV})=13/2^{+}, 15/2^{-}$ produced an adequate representation of the data.

E(level)	\mathbf{J}^{π}	S [†]	Comments
0.0	7/2 ^{-‡@}	0.40	
12?	3/2+‡#		
940 <i>30</i>	1/2 ^{+#}		
1240 30	$11/2^{-2}$	0.07	
2110 30	15/2-@	≤0.03	not strongly excited In contrast to ⁴³ Sc. This May reflect significant fragmentation of the Configuration= $((\nu f_{7/2})^{+2}(\pi f_{7/2}))$ pickup strength to $15/2^{-1}$ states In ⁴⁵ Sc.
2960 <i>30</i>	(9/2+,11/2-)	(0.10) ^{&}	J^{π} : DWBA with $J^{\pi}=9/2^+$ represented the data well, but recognition of possible forward-angle contributions from low-spin states also suggested $J^{\pi}=11/2^-$ As a possible assignment.
3690 30	$19/2^{-@}$	1.0	
4610 30	$(13/2^{-}, 15/2^{+})$	(0.24)	S: if $J^{\pi} = 13/2^{-}$.
4690 30	$(13/2^+, 15/2^-)$	(0.16)	S: if $J^{\pi} = 15/2^{-}$.
4950 30	(17/2 ⁺)	(0.19)	J^{π} : nearly flat $\sigma(\theta)$ to 35°. $J^{\pi}=17/2^+$ reproduced $\sigma(\theta)$ and gave the correct qualitative representation of the analyzing power. $J^{\pi}=19/2^-$ was thought to Be unlikely due to the strong excitation of the 3.69-MeV state, but could not Be ruled out on the basis of model-independent arguments.
		P-	S: 0.19 if $J^{n} = 19/2^{-}$.
5200 30	$(11/2^{-}, 13/2^{+})$	(0.24) ^{&}	
5420 <i>30</i>	23/2-#		J^{π} : $J^{\pi}=21/2,23/2^{-}$ from ²⁸ Si(¹⁹ F,2p γ), ³⁰ Si(¹⁸ O,p2n γ), (1975Bi09). In back-angle spectra this was the second strongest line. Two-step reaction calculation with a 2 ⁺ inelastic excitation and a $J^{\pi}=19/2^{-}$ three-nucleon transfer showed preference for $J^{\pi}=23/2^{-}$.

[†] Relative cluster spectroscopic factors.

[‡] Discrepancy between calculated and experimental analyzing powers May reflect the presence of the 12-keV state.

[#] From the Adopted Levels.

[@] Assumed In calculation of cluster spectroscopic factor.

 $^{\&}$ If J^{π} = 11/2⁻.