⁴⁵Clβ⁻ decay 2004Mr01,2003Gr22,1998WiZV

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	T. W. Burrows	NDS 109, 171 (2008)	30-Oct-2007		

Parent: ⁴⁵Cl: E=0.0; $J^{\pi}=(1/2^+)$; $T_{1/2}=413$ ms 25; $Q(\beta^-)=1.141\times 10^4$ 12; $\%\beta^-$ decay=100.0

⁴⁵Cl-E, J^{π} , $T_{1/2}$: From the ⁴⁵Cl Adopted Levels.

⁴⁵Cl-Q(β^{-}): From 2003Au03.

 ${}^{45}\text{Cl}-\%\beta^-$ decay: From the ${}^{45}\text{Cl}$ Adopted Levels.

- 1998WiZV: Be(⁴⁸Ca,X) E=70 MeV/A and 80 MeV/A. Mixed-particle beam produced by fragmentation of ⁴⁸Ca beams provided by the K1200 cyclotron At the NSCL of Michigan State University on 254 mg/cm² and 376 mg/cm² Be targets, respectively. Ions identified with a thin Si detector before implantation into Al targets. Measured γ 's and $\gamma\gamma$ coincidences. Changes In the beam-on/beam-off timing cycle and beam-line tuning allowed association of γ 's to specific decays and $T_{1/2}$ measurements.
- 2004Mr01, 2003Gr22: Be(⁴⁸Ca,X) E=60 MeV/A. LISE3 spectrometer At GANIL used to select ^{44,45,46}Cl isotopes that were purified by Wien-Filter. Isotopes implanted into double-sided Si detector with 16×16 strips of 3 mm Γ . Detected β^{-1} 's (2 plastic scintillators), γ 's and $\gamma\gamma$ -coincidences (2 coaxial 70% HPGe and 1 EXOGAM four-fold clover detector), N's (TONNERRE array), and n γ -coincidences.

All data are from 2004Mr01, except As noted.

⁴⁵Ar Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	7/2-	21.48 s 15	$\beta\beta^{-}=100$ T _{1/2} $\beta\beta^{-}$: from the Adopted Levels
542.1 6 1339.9 [#] 8 1416.1 [#] 12 1734.7 9 1770.3 8 2757.0? 12 3294 8 8	(3/2 ⁻) (3/2 ⁻)		$T_{1/2},\%\beta^-$: from the Adopted Levels.
3949.7? <i>12</i> 4326.1 <i>9</i>			

[†] From least-squares fit to $E\gamma'$ s assuming $\Delta E(\gamma)=1$ keV when not given (evaluator).

[‡] As quoted by 2004Mr01. Not adopted by the evaluator.

[#] See footnote on $E\gamma(798\gamma, 874\gamma)$.

β^{-} radiations

 $I\beta$ normalization: decay scheme considered too incomplete by the evaluator to attempt normalization.

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$
$(7.08 \times 10^3 \ 12)$	4326.1	5.5
$(7.46 \times 10^{3#} 12)$	3949.7?	1
$(8.12 \times 10^3 \ 12)$	3294.8	58.9 19
$(8.65 \times 10^{3#} 12)$	2757.0?	1
$(9.64 \times 10^3 \ 12)$	1770.3	19
$(9.68 \times 10^3 \ 12)$	1734.7	13.2 8
$(9.99 \times 10^3 \ 12)$	1416.1	4.2 15

45 Cl β^- decay 2004Mr01,2003Gr22,1998WiZV (continued)

β^{-} radiations (continued)

E(decay)	E(level)	$I\beta^{-\dagger \ddagger}$		
$(1.007 \times 10^4 \ 12)$	1339.9	3.9 11		
$(1.087 \times 10^4 \ 12)$	542.1	11.3 10		

[†] Relative feeding from intensity balance.

[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

 $\gamma(^{45}\text{Ar})$

 $I\gamma$ normalization: decay scheme considered too incomplete by the evaluator to attempt normalization.

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [‡]	$\alpha^{\boldsymbol{b}}$	Comments
541.7 ^{#@} 7	100	542.1	(3/2 ⁻)	0.0	7/2-	(E2)	3.84×10 ⁻⁴ 5	α =3.84×10 ⁻⁴ 5; α (K)=0.000352 6; α (L)=2.90×10 ⁻⁵ 5; α (M)=2.82×10 ⁻⁶ 5
797.7 ^{@&}	4	1339.9	$(3/2^{-})$	542.1	$(3/2^{-})$			
874.0 ^{@&}	2.7	1416.1		542.1	$(3/2^{-})$			
^x 1157.5 [#] 7								
1192.6 [#] 7	14	1734.7		542.1	$(3/2^{-})$			
1228.1 ^{#@} 7	36	1770.3		542.1	$(3/2^{-})$			
1340 [@]	3.4	1339.9	$(3/2^{-})$	0.0	$7/2^{-}$			
1416.1 ^{@ac}	3	1416.1		0.0	$7/2^{-}$			
1524.4 [#] 7	17	3294.8		1770.3				
1560.2 ^C	1.6	3294.8		1734.7				
1955.1 ^C	2.1	3294.8		1339.9	$(3/2^{-})$			
2214.8 ^C	1	2757.0?		542.1	$(3/2^{-})$			
2751 [#] 2	28	3294.8		542.1	$(3/2^{-})$			
2986.2	2.5	4326.1		1339.9	$(3/2^{-})$			
3295.2 ^a	12	3294.8		0.0	$7/2^{-}$			
3407.5 ^C	1	3949.7?		542.1	$(3/2^{-})$			
3783.8 ^a	3	4326.1		542.1	$(3/2^{-})$			

[†] Relative intensity.

[‡] From the Adopted Gammas.

[#] From 1998WiZV. [@] Also seen In ⁴⁶Cl β^- n decay.

& Coincidences of the 798 and 874 γ 's with the 542 γ . However, 798 and 874 γ 's are also weakly coincident with the 1228 γ . In 46 Cl decay the 798 γ is 50% more intense than the 1228 γ while In 45 Cl decay I γ (1228 γ) is about 10 times I γ (798). I γ (874 γ) behaves In a similar fashion. Therefore, 2004Mr01 suggest two states, 1340 and 1417, and leave open a possibility of a doublet and unseen transition.

^{*a*} Placed In the decay scheme using a sum rule.

^b Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^c Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

