⁹Be(⁴⁸Ca,Xγ): E=60.3 MeV/A 2003Do10

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	T. W. Burrows	NDS 109, 171 (2008)	30-Oct-2007					

Fragments detected by the SPEG spectrometer At GANIL; ionization and drift chambers and a plastic scintillator In the SPEG focal plane provided measurement of ΔE , E, and tof for fragment identification. Measured E γ , I γ , and $\gamma\gamma$ - and (particle)- γ coin, and $\gamma(\theta)$ using 74 BaF₂ crystals and 3 segmented Ge clover detectors.

⁴⁵Ar Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0	7/2-		J^{π} : from comparison of branching ratios and log <i>ft</i> 's for the decay of ⁴³ Ar and ⁴⁵ Ar and shell model predictions.
537 6 1352 <i>16</i> 1765 <i>10</i> 1914 6	3/2 ^{-#} (5/2 to 11/2 ⁻) [#] (1/2,3/2 ⁻) [#] 7/2,11/2 ^{-#}	0.34 ns +32-15	T _{1/2} : from line-shape analysis.

 † From least-squares fit to Ey's (evaluator).

[‡] 2003Do10 consider all J^{π} assignments As tentative since $J^{\pi}(g.s.)$ is tentative. Not adopted by the evaluator.

[#] J^{π}(537,1914)=3/2,7/2,11/2⁻ from D,E2 or D,Q γ 's. Since the 1352 and 1914 γ 's were not observed In ⁴⁵Cl β ⁻ decay, 2003Do10 suggest that the 1352 and 1914 states have a higher spin than the 537 and 1228 states. Therefore, 2003Do10 exclude J(1914)=3/2 and J(537)=7/2 or 11/2. Evaluator's note: 1352 keV *16* γ could Be the same As the 1339.9 keV 8 γ In ⁴⁵Cl β ⁻ decay.

$\gamma(^{45}{\rm Ar})$

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.	Comments
537 6	75	537	3/2-	0	7/2-	D,E2	Mult.: $\Delta J=0$ D or $\Delta J=2$ Q from anisotropy ratio=1.4 4. \neq M2 from comparison to RUL (evaluator).
1228 8	25	1765	$(1/2, 3/2^{-})$	537	$3/2^{-}$		-
1352 16	25	1352	$(5/2 \text{ to } 11/2^{-})$	0	$7/2^{-}$		
1914 6	100	1914	7/2,11/2-	0	$7/2^{-}$	D,Q	Mult.: $\Delta J=0$ D or $\Delta J=2$ Q from anisotropy ratio=1.0 3.

