History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Jun Chen and Balraj Singh	NDS 190,1 (2023)	20-Jun-2023				

Parent: ⁴⁴V: E=268 *10*; $J^{\pi}=(6)^+$; $T_{1/2}=150$ ms *3*; $Q(\varepsilon)=13749$ *7*; $\%\varepsilon+\%\beta^+$ decay=100

 44 V-E,J^{π},T_{1/2}: From the Adopted Levels of 44 V.

⁴⁴V-T_{1/2}: From 1997Ha04, average of values for five different γ rays, adopted in ⁴⁴V Adopted Levels.

⁴⁴V-Q(ε): From Adopted Levels of ⁴⁴V based on newly measured mass of ⁴⁴V by 2022Wa39. Other: 13741 7 from 2021Wa16. ⁴⁴V-%ε+%β⁺ decay: Evaluators assume that there is no IT decay from the 150-ms isomer.

1997Ha04: ⁴⁴V produced by ⁴⁰Ca(⁶Li,2n) E=35 MeV at the TASCC facility of the Chalk River Laboratories. 68% efficient HPGe detectors for detecting γ -rays and scintillators for detecting positrons. Measured E γ , I γ , $\gamma\gamma$, T_{1/2}(⁴⁴V isomer), $\gamma\beta\beta$ and $\gamma\gamma\beta$ coin. Deduced levels, branching ratios, log *ft*.

1994Ke07: ⁴⁴V produced by Ni(⁵⁸Ni,X) with E=69 MeV/nucleon ⁵⁸Ni beam produced from the GANIL cyclotrons on a natural nickel target of 50 mg/cm². A telescope of two 150 μ m silicon detectors for detecting product nuclei, a plastic scintillator for detecting positrons and four germanium detectors for detecting γ -rays. Measured T_{1/2}, $\beta\gamma$ coin. Deduced an isomeric ratio of 25% in ⁴⁴V.

⁴⁴Ti Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡
0.0	0^{+}	59.1 y <i>3</i>
1083.10 10	2^{+}	2.57 ps 37
2454.35 13	4+	0.433 ps 35
4015.37 15	6+	0.42 ps 6
4803.07 32	(6^{+})	
6848.87 20	$(6)^{+}$	

[†] From a least-squares fit to γ -ray energies.

[‡] From the Adopted Levels.

ε, β^+ radiations

 β^+ feeding to 2454 level: 6.0 51 (from intensity balance, 1997Ha04). It is set at zero here since almost no feeding is expected from log *ft*>10.3 for $\Delta J=2$, no transitions.

Unrealistic intensity balance=-5.7 9 at 4803 level suggests that other γ transitions, yet unseen, de-excite the 4803 level.

E(decay)	E(level)	$I\beta^+$ ‡	Ie‡	Log ft	$I(\varepsilon + \beta^+)^{\dagger\ddagger}$	Comments
(7168 12)	6848.87	44 5	<0.26	3.44 5	44 5	av E β =2859 6; ε K=8.64×10 ⁻⁴ 12; ε L=9.41×10 ⁻⁵ 13; ε M+=1.539×10 ⁻⁵ 23
(10002 12)	4015.37	56 <i>5</i>	<0.14	4.110 40	56 5	Superallowed β transition. av E β =4247 6; ε K=2.912×10 ⁻⁴ 34; ε L=3.170×10 ⁻⁵ 38; ε M+=5.19×10 ⁻⁶ 7

[†] From γ intensity balance at each level.

[‡] Absolute intensity per 100 decays.

$^{44}\mathrm{V}\,\varepsilon$ decay (150 ms) 1997Ha04 (continued)

 γ ⁽⁴⁴Ti)

I γ normalization: I(γ +ce)(1083 γ)=100.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]
1083.09 10	100.0	1083.10	2+	0.0	0^{+}	E2
1371.22 8	94.3 <i>36</i>	2454.35	4+	1083.10	2^{+}	E2
1561.00 8	85.9 <i>35</i>	4015.37	6+	2454.35	4^{+}	E2
2045.6 4	8.1 6	6848.87	$(6)^{+}$	4803.07	(6^{+})	
2348.5 4	2.4 6	4803.07	(6^{+})	2454.35	4+	
2833.42 14	32.9 24	6848.87	$(6)^{+}$	4015.37	6+	

[†] From 1997Ha04.
[‡] From the Adopted Gammas.
[#] Absolute intensity per 100 decays.

Legend

⁴⁴V ε decay (150 ms) 1997Ha04

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

 $\begin{array}{l} I_{\gamma} < \ 2\% \times I_{\gamma}^{max} \\ I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$			$\%\varepsilon + \%\beta^{+} = 100 / \frac{(6)^{+} 268}{Q_{\varepsilon} = 137497}$ 150 ms 3 $\frac{44}{23}V_{21}$					
	<u>(6)</u> ⁺	2015 - 20	6848.87		$\frac{\mathbf{I}\boldsymbol{\beta}^+}{44}$	<u>Ιε</u> <0.26	Log <i>ft</i> 3.44	
	(6 ⁺) 6 ⁺	156,00 23405 24	4803.07 4015.37	0.42 ps 6	56	< 0.14	4.110	
	4+		2454.35	0.433 ps <i>35</i>				
	2+	1983. (1983.	1083.10	2.57 ps <i>37</i>				
	0+		0.0	59.1 y <i>3</i>				

 $^{44}_{22}{
m Ti}_{22}$