⁴⁰Ca(⁷Li,t) **2009Fu17** | | Histo | ory | | | |-----------------|---------------------------|------------------|------------------------|--| | Type | Author | Citation | Literature Cutoff Date | | | Full Evaluation | Jun Chen and Balraj Singh | NDS 190,1 (2023) | 20-Jun-2023 | | 2009Fu17: E=26.0 MeV 7 Li beam produced from the Pelletron Accelerator at Kyoto University. 150 μ g/cm 2 96.9% enriched target on Carbon foil. Tritons were detected by Δ E-E telescope of Si detectors with FWHM=70 keV. The α particles emitted from the excited states of 44 Ti were detected by eight silicon photodiode detectors. Measured σ (E_t, θ), α t coincidences and α t(θ). Deduced levels, J^{π} , α-cluster states. 1980Cu06: E=34 MeV ⁷Li beam of 100-500 nA produced from the Florida State University Super FN tandem Van de Graaff Accelerator. A 350 μg/cm^{2 40}Ca target. Tritons detected by ΔΕ-E telescopes of silicon detectors. Measured $\sigma(E_t, \theta)$. Deduced levels, J^{π} , spectroscopic factors from DWBA analysis. 1969Go17: E=30.3 MeV. Measured $\sigma(E_t, \theta)$. 1988Ra28: E=34 MeV. Measured $\sigma(E_t, \theta)$. $S(\alpha)(^{44}Ti)=5127.1 \ 7 \ (2021Wa16).$ ## 44Ti Levels | E(level) [†] | Jπ‡ | <u>L</u> ‡ | S# | E(level) [†] | Jπ‡ | <u>L</u> ‡ | E(level) [†] | $J^{\pi \ddagger}$ | L [‡] | |---------------------------------|-------------|------------|------|-----------------------|-------------|----------------|-------------------------|--------------------|----------------| | 0& | 0+& | | 1.0 | 10.70×10^3 | 4+ | 4 | 13.24×10^3 | $(3^-,4^+)$ | 3,4 | | 1080 <mark>&</mark> | 2+& | | 0.54 | 11.04×10^3 | 4+ | 4 | 13.44×10^3 | 5- | 5 | | 7.01×10^3 @ | | | | 11.11×10^3 | $(5^-,6^+)$ | 5,6 | 13.97×10^3 | 3- | 3 | | 7.56×10^3 @ | | | | 11.66×10^3 | 3- | 3 | 14.27×10^3 | $(4^+,5^-)$ | 4,5 | | 8.20×10^3 | $(1^-,2^+)$ | 1,2 | | 11.81×10^3 | $(4^+,5^-)$ | 4,5 | 14.71×10^3 | $(5^-,6^+)$ | 5,6 | | $8.45 \times 10^3 a$ | 3- | 3 | | 11.95×10^3 | 7- | 7 ^c | 14.83×10^3 | $(3^-,4^+)$ | 3,4 | | 8.95×10^3 | 4+ | 4 | | 12.11×10^3 | 4+ | 4 | 15.35×10 ³ @ | | | | $9.40 \times 10^{3} \frac{b}{}$ | 5- | 5 | | 12.58×10^3 | 4+ | 4 | 16.02×10 ³ @ | | | | 9.58×10^{3} | 5- | 5 | | 12.86×10^3 | $(3^-,4^+)$ | 3,4 | | | | [†] From 2009Fu17, unless otherwise noted. Interpreted as α cluster states, decaying by α to 40 Ca g.s. $^{^{\}ddagger}$ From $t\alpha(\theta)$ distributions fitted with Legendre polynomials (2009Fu17), unless otherwise noted. [#] Relative spectroscopic strength. From 1980Cu06. [@] No $t\alpha(\theta)$ data was obtained due to threshold level issues for 7.01 and 7.56 MeV peaks and due to very weakly populated states at 15.35 and 16.02 MeV. [&]amp; From 1980Cu06. ^a A weak peak detected on its shoulder. ^b May consist of two levels. ^c $t\alpha(\theta)$ fit is improved for L=4 for θ >150°.