$^{32}S(^{14}N,pn\gamma),^{42}Ca(\alpha,2n\gamma)$ 1975Si19,1976Br15

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Jun Chen and Balraj Singh	NDS 190,1 (2023)	20-Jun-2023						

1975Si19: ³²S(¹⁴N,pn γ) E=26-43 MeV ¹⁴N beam produced from the tandem accelerators at the Max-Planck-Institute at Heidelberg and McMaster University. A 1.5 mg/cm² target of natural CdS on a bismuth backing. Large volume high resolution (2keV) Ge(Li) detectors for detecting γ -rays. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma(\theta)$. Deduced levels, J^{π} , T_{1/2} using Doppler Shift Attenuation Method (DSAM).

1976Br15: ⁴²Ca(α ,2n γ) E=31 MeV alpha beam produced from the cyclotron of the Institut des Sciences Nucleaires in Grenoble. A target of 5 mg/cm² rolled metallic calcium foil (90% enriched in ⁴²Ca) on a 7 μ m mylar film. Two Ge(Li) detectors of 10 and 50 cm³ with FWHM=2.5 and 3.5 keV, respectively for 1.33 MeV γ -rays. Measured E γ , $\gamma\gamma$ -coin. Deduced lifetime of 8038 level using DSAM.

Level scheme is from 1975Si19.

⁴⁴Ti Levels

E(level) [†]	J ^π ‡	T _{1/2} #	Comments
0.0 [@]	0+		
1082.9 [@] 1	2^{+}		
2454.2 [@] 5	4+		
3176.3 6	(3 ⁻)		
3645.9 6	(4 ⁻)		
4014.9 [@] 6	6+		
4061.1 6	(5 ⁻)		
6507.6 [@] 15	(8 ⁺)	<0.5 ps	
7670.4 [@] 16	(10^{+})	1.87 ps 35	
8039.3 [@] 16	(12 ⁺)	2.1 ns 4	$T_{1/2}$: from pulsed-beam (1976Br15).

[†] From a least-squares fit to γ -ray energies.

[‡] As proposed in 1975Si19 based on band assignments and $\gamma(\theta)$.

[#] From DSAM in 1975Si19, unless otherwise noted.

[@] Band(A): Yrast g.s. band (1975Si19).

$\gamma(^{44}\text{Ti})$

E_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	Comments
368.9 1	8039.3	(12^{+})	7670.4	(10^{+})	Q	$A_2 = +0.22 \ 11; A_4 = +0.02 \ 14 \ (19758i19)$
469.6 <i>1</i>	3645.9	(4^{-})	3176.3	(3^{-})	(D)	$A_2 = -0.12 2; A_4 = +0.07 3 (1975Si19)$
		. ,				Mult.: $\gamma(\theta)$ data also consistent with a large $\delta(Q/D)$ (1975Si19).
884.7 <i>3</i>	4061.1	(5 ⁻)	3176.3	(3 ⁻)		
1082.9 [‡] 1	1082.9	2+	0.0	0^{+}	Q	A ₂ =+0.16 4; A ₄ =-0.07 4 (1975Si19)
1162.8 <i>3</i>	7670.4	(10^{+})	6507.6	(8^{+})	Q	$A_2 = +0.54 \ 13; A_4 = -0.41 \ 17 \ (1975 \text{Si19})$
1371.4 5	2454.2	4+	1082.9	2+	-	
1560.7 4	4014.9	6+	2454.2	4+		
1607.0 5	4061.1	(5 ⁻)	2454.2	4+		
2092.9 [‡] 8	3176.3	(3 ⁻)	1082.9	2+	D	$A_2 = -0.15 2; A_4 = -0.03 4 (1975Si19)$
2492.6 14	6507.6	(8+)	4014.9	6+		,

[†] From 1975Si19.

[‡] Used for calibration in 1975Si19.

[#] From $\gamma(\theta)$ in 1975Si19. The authors also assign magnetic or electric characters based on level scheme, which are replaced with D for dipole and Q for quadrupole by the evaluators due to no experimental evidence for those assignments in this work.

$^{32}S(^{14}N,pn\gamma),^{42}Ca(\alpha,2n\gamma)$ 1975Si19,1976Br15

$^{32}S(^{14}N,pn\gamma),^{42}Ca(\alpha,2n\gamma)$ 1975Si19,1976Br15

 ${}^{44}_{22}{\rm Ti}_{22}$