Adopted Levels

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Jun Chen and Balraj Singh	NDS 190,1 (2023)	20-Jun-2023	

 $Q(\beta^{-})=18200 \text{ syst}; S(n)=3090 \text{ syst}; S(p)=26250 \text{ syst}; Q(\alpha)=-22660 \text{ syst}$ 2021Wa16

Estimated uncertainties (2021Wa16): 640 for $Q(\beta^{-})$ and S(n), 780 for S(p), and 710 for $Q(\alpha)$.

 $S(2n) = 3670 \ 580, \ Q(\beta^{-}n) = 16200 \ 580 \ (syst, 2021Wa16), \ S(2p) = 50070 \ (theory, 2019Mo01). \ Q(\beta^{-}2n) = 11900 \ 510, \ Q(\beta^{-}3n) = 9900 \ 515, \ S(2p) = 50070 \ (theory, 2019Mo01). \ Q(\beta^{-}2n) = 11900 \ 510, \ Q(\beta^{-}3n) = 9900 \ 515, \ S(2p) = 50070 \ (theory, 2019Mo01). \ Q(\beta^{-}2n) = 11900 \ 510, \ Q(\beta^{-}3n) = 9900 \ 515, \ S(2p) = 50070 \ (theory, 2019Mo01). \ Q(\beta^{-}2n) = 11900 \ 510, \ Q(\beta^{-}3n) = 9900 \ 515, \ S(2p) = 50070 \ (theory, 2019Mo01). \ Q(\beta^{-}2n) = 11900 \ 510, \ Q(\beta^{-}3n) = 9900 \ 515, \ S(2p) = 50070 \ (theory, 2019Mo01). \ S(2p) = 50070 \ (theory, 2019$

 $Q(\beta^{-4}n)=4990\ 510$, and $Q(\beta^{-5}n)=1545\ 510$ deduced by evaluators from relevant mass excesses in 2021Wa16.

First identification of ⁴⁴Si nuclide by 2007Ta15.

2007Ta15: W(⁴⁸Ca,X γ) E=142 MeV/nucleon beam from the National Superconducting Cyclotron Laboratory (NSCL). The fragments were separated with the A1900 fragment separator. Isotopic identification by multiple Δ E signals, magnetic rigidity, total energy and time-of-flight analysis. Detectors: plastic scintillators, parallel-plate avalanche counters (PPACs) and silicon PIN diodes. The ⁹Be target was also used with ⁴⁸Ca beam.

A total of three events were assigned to ⁴⁴Si with natural tungsten target and no events due to ⁴⁴Si were observed with a ⁹Be target.

Theoretical structure calculations:

2021Su18: calculated potential energy surface, occupation numbers for ground states in (β, γ) plane, energies, spins, B(E2) and quadrupole moments of low-lying positive-parity levels, proton and neutron single-particle levels as function of β and γ deformation parameters using antisymmetrized molecular dynamics (AMD) with Gogny D1S density functional.

2014Ca21, 2009No01: calculated energy, quadrupole moment, and B(E2) of the first 2⁺ states using Large-scale shell-model.

1999La18: calculated binding energy, radius, deformations, neutron shell gap suppression using relativistic Hartree plus Bogoliubov theory.

Other theoretical calculations: 17 references for nuclear structure and one for radioactive decays retrieved from the NSR database (www.nndc.bnl.gov/nsr/) are listed in document records which can be accessed via web-based ENSDF database.

Other theory references: 2021Ku13, 2020Ab12, 2020Th02, 2019Sa58, 2018Yo06, 2015Wu04, 2015Wu07, 2014Eb02, 2014Wa03, 2012Ch48, 2012Ho19,

Additional information 1.

⁴⁴Si Levels

E(level)	\mathbf{J}^{π}	Comments	
0	0^+	$\%\beta^{-}=100; \ \%\beta^{-}n=?; \ \%\beta^{-}2n=?; \ \%\beta^{-}3n=?; \ \%\beta^{-}4n=?$	
		$\%\beta^{-}5n=?$	
		Allowed decay mode is β^- followed by delayed-neutron emission, thus 100% β^- decay mode is assigned by	
		inference.	
		Theoretical $T_{1/2}=10.6$ ms, $\%\beta^{-}n=79$, $\%\beta^{-}2n=13$, $\%\beta^{-}3n=1$, $\%\beta^{-}4n=0$ (2019Mo01).	
		Theoretical $T_{1/2}=12.6$ ms, $\%\beta^{-}n=30.1$; $\%\beta^{-}2n=9.16$, 9.35 ; $\%\beta^{-}3n=1.53$, 1.33 ; $\%\beta^{-}4n=0.002$; $\%\beta^{-}5n=0$	
		(2021Mi17): two values for different fission barriers.	

Production cross section= 7×10^{-10} mb 5 (2007Ta15).

 $T_{1/2}$: half-life of ⁴⁴Si has not been measured, but expected to be >360 ns from estimated from time-of-flight of 363 ns, as stated by 2005St29 (Ref. 13 in 2007Ta15) at NSCL facility. Actual half-life is expected to be much longer. From trend of decreasing half-life with increasing neutron number in neutron-rich nuclei, expected half-life is <12 ms from known half-lives of 12.5 ms for ⁴²Si, 20 ms for ⁴¹Si, 31 ms for ⁴⁰Si and 41 ms for ³⁹Si. Other: 4 ms (syst, 2021Ko07).