⁴⁴Ti ε decay (59.1 y) 1991We08,1990Sc08,1988Al27

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen and Balraj Singh	NDS 190,1 (2023)	20-Jun-2023

Parent: ⁴⁴Ti: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=59.1$ y 3; $Q(\varepsilon)=267.4$ 19; % ε decay=100

⁴⁴Ti-T_{1/2}: From ⁴⁴Ti Adopted Levels.

⁴⁴Ti-Q(ε): From 2021Wa16.

1991We08: experiment performed at the Brookhaven National Laboratory. A LEPS-type Ge detector for detecting γ -rays. Measured E γ , I γ . Deduced high precision transition energies.

1990Sc08: measured γ -emission rate. Deduced photo emission probabilities. Ge(Li) detectors.

1988A127: ⁴⁴Ti activity produced by the ⁴⁵Sc(p,2n) reaction at the Brookhaven National Laboratory. Measured E γ , I γ , $\gamma\gamma$ -coin. Deduced levels, branchings, T_{1/2} using delayed coincidence method. LEPS detector and Ge(Li) detectors.

1967Ri06: measurement performed at the Brookhaven National Laboratory. Measured E γ , I γ , $\gamma\gamma$ -correlation, X γ -coin. Deduced levels, γ -branchings, internal conversion coefficients, T_{1/2} using delayed coincidence method.

1963K106: ⁴⁴Ti activity produced by the ⁴⁵Sc(d,3n) reaction. Measurement performed at the University of Colorado. Measured E γ , I γ , $\gamma\gamma$ -coin. Deduced levels, γ -branchings, conversion coefficients, T_{1/2} using delayed coincidence method.

2007Dr05: measured Ey, Iy, $\gamma\gamma$ -coin. Deduced conversion coefficients and penetration parameter. Others:

T_{1/2} of ⁴⁴Ti: 2006Ah10, 2001Ha21, 2000Go15, 1999Wi01, 1998Ah03, 1998Go05, 1998No06, 1997No06, 1996Me22, 1990Al11, 1983Fr27, 1965Mo07, 1965Wi05.

T_{1/2} and isotopic assignment: 1954Sh30, 1957Hu90, 1959Cy90.

γ: 1973Gr28, 1959Cy90, 1957Hu90.

 $\gamma\gamma(\theta)$: 1968Gl02, 1962Th12.

 $\gamma\gamma$ (t): 1975Gu24.

γγ(θ,t): 1971Ha38, 1973Ha61, 1974Co20, 1974Re12, 1974Si09.

Preparation of ⁴⁴Ti radioactive target: 1999La11.

The total average radiation energy of 268 keV 4 (which includes all the radiations emitted by ⁴⁴Ti), calculated with the computer program RADLST, agrees very well with $Q(\varepsilon)=267.4$ keV *19* (2021Wa16) and confirms the quality and completeness of the ⁴⁴Ti decay scheme.

⁴⁴Sc Levels

E(level) [†]	Jπ‡	T _{1/2} ‡	Comments
0.0	2+	4.0420 h 25	
67.8680 14	1-	154.8 ns 8	T _{1/2} : weighted average of 155.6 ns 7 (1988Al27), 155 ns 2 (1975Gu24), 166 ns 5 (1963Kl06), 153 ns 2 (1967Ri06), 153 ns 1 (1962Th12), 180 ns 20 (1959Cy90).
146.1915 20	0-	51.0 μs <i>3</i>	$T_{1/2}$: weighted average of 51.1 μ s 3 (1988Al27), 49.5 μ s 10 (1964Br27), 50 μ s 3 (1963Kl06).

[†] From a least-squares fit to γ -ray energies.

[‡] From the Adopted Levels. For excited states, adopted values are from this dataset, as noted under comments.

ε radiations

Subshell ratios are theoretical values from 1998Sc28.

The log *ft* systematic trend of second-forbidden transitions suggests log *ft*>10.6 (1998Si17) for the 0⁺ to 2⁺ ε transition to ⁴⁴Sc ground state. This limit corresponds to I ε <0.04%.

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger\ddagger}$	Log ft	Comments
(121.2 19)	146.1915	99.8 +2-17	6.497 +8-1	ε K=0.8812 8; ε L=0.1022 6; ε M+=0.01664 24 I ε : from I(γ +ce)(78.4)+I(γ +ce)(146).

Continued on next page (footnotes at end of table)

$^{44}\mathrm{Ti}\,\varepsilon$ decay (59.1 y) 1991We08,1990Sc08,1988Al27 (continued)

ϵ radiations (continued)

E(decay)	E(level)	$I\varepsilon^{\dagger\ddagger}$	Log ft	Comments
(199.5 19)	67.8680	<1.9	>8.7	ε K=0.8839 7; ε L=0.0999 5; ε M+=0.01621 22 I ε : from 100-I(ε to 146 level)=0.2 +17-2. Others: 0.7 3, from a measurement of the 68- and 78-keV γ rays in delayed coincidence with 4-keV x-rays from electron capture (1988Al27); 1.9 15 (1967Ri06); 1.2 19 from γ +ce intensity balance.

[†] From γ +ce intensity balance at each level, unless otherwise noted. [‡] Absolute intensity per 100 decays.

$\gamma(^{44}Sc)$

I γ normalization: weighted average of 0.959 *15* deduced by the evaluators from $\Sigma I(\gamma+ce \text{ to g.s.})=100$ and 0.974 *13* deduced by 1990Sc08 from I γ (78.3 γ) relative to that of the 1157-keV transition with %I γ =0.999 *I* in the decay of ⁴⁴Sc in equilibrium with ⁴⁴Ti.

E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α [@]	Comments
67.8679 14	96.1 <i>15</i>	67.8680	1-	0.0	2+	El	0.0846 12	$\begin{aligned} \alpha(K) = 0.0770 \ 11; \ \alpha(L) = 0.00676 \ 9; \\ \alpha(M) = 0.000831 \ 12 \\ \alpha(N) = 4.47 \times 10^{-5} \ 6 \\ \% I_{Y} = 93.0 \ 19 \\ E_{Y}: \ others: \ 67.875 \ 5 \ (1988A127), \ 67.85 \ 4 \\ (1967Ri06), \ 67.85 \ 7 \ (1963K106). \\ I_{Y}: \ weighted \ average \ (LWM) \ of \ 94.2 \ 15 \\ (1967Ri06), \ 98.1 \ 15(1988A127), \ and \ 96.0 \ 15 \\ (1990Sc08). \ Original \ uncertainty \ of \ 0.5 \\ (1967Ri06) \ seemed \ unrealistically \ low. \\ Evaluators \ increased \ it \ to \ 1.5. \\ Mult.: \ from \ \alpha(K) exp = 0.123 \ 23 \ (1967Ri06); \\ \alpha(exp) = 0.10 \ 5 \ (1963K106). \ \alpha(exp) = 0.069 \ 11, \\ deduced \ by \ evaluator \ from \ decay \ scheme \ by \\ using \ \% I_{Y}(67.9) = 93.5\% \ 15 \ (1990Sc08), \ and \\ neglecting \ the \ very \ weak \ 146-keV \ transition. \\ \alpha(exp) = 0.069 \ 11 \ disagrees \ with \ a \ theoretical \\ value \ of \ 0.0845 \ 25 \ (1976Ba63). \end{aligned}$
78.3234 14	100.0 11	146.1915	0-	67.8680	1-	M1	0.0302 4	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0274 \ 4; \ \alpha(\mathbf{L}) = 0.002486 \ 35; \\ &\alpha(\mathbf{M}) = 0.000308 \ 4 \\ &\alpha(\mathbf{N}) = 1.684 \times 10^{-5} \ 24 \\ &\% \mathbf{I}\gamma = 96.8 \ 17 \\ \mathbf{E}_{\gamma}: \ \text{others:} \ 78.337 \ 3 \ (1988A127), \ 78.38 \ 4 \\ &(1967Ri06), \ 78.44 \ 7 \ (1963K106). \\ \mathbf{I}_{\gamma}: \ \text{weighted average (LWM) of 100.0 \ 11 \\ &(1967Ri06), \ 100.0 \ 11 \ (1988A127), \ \text{and} \ 100.0 \\ &13 \ (1990Sc08). \ \text{Original uncertainty of 0.5} \\ &(1967Ri06) \ \text{seemed unrealistically low.} \\ &Evaluators \ \text{increased it to } 1.1. \\ &\text{Mult.: \ from \ } \alpha(\mathbf{K}) \exp = 0.031 \ 5 \ (1967Ri06); \\ &\alpha(\exp) = 0.017 \ 8 \ (1963K106). \ \alpha(\exp) = 0.019 \ 14, \\ &\text{deduced by evaluator \ from \ decay \ scheme \ by \\ &using \ \% \mathbf{I}\gamma(78.4) = 97.4\% \ 13 \ (1990Sc08), \ \mathbf{I}\varepsilon(\text{to} \\ &67.9 \ \mathbf{level}) = 0.7\% \ 3 \ (1988A127), \ \text{and} \\ &\text{neglecting \ the \ very \ weak \ 146-keV \ transition.} \\ &\alpha(\exp) = 0.019 \ 14 \ disagrees \ with \ a \ theoretical \\ &value \ of \ 0.0302 \ 9 \ (1976Ba63). \\ \end{aligned}$

Continued on next page (footnotes at end of table)

				Τi ε decay	v (59.1 y)	1991We08,1990Sc08,1988Al27 (continued)		
						γ (⁴⁴ Sc) (c	ontinued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [‡]	α [@]	Comments	
146.22	0.095 3	146.1915	0-	0.0 2+	[M2]	0.0459 6	α(K)=0.0415 6; α(L)=0.00391 5; α(M)=0.000483 7 α(N)=2.61×10-5 4 %Iγ=0.092 3 Eγ: from level energy difference. Other: 147 15 (1967Ri06). Iγ: weighted average (LWM) of 0.10 3 (1967Ri06), 0.093 6 (1988A127), and 0.095 3 (1990Sc08).	

[†] From 1991We08, unless otherwise specified.
[‡] From ce data in 1963K106. The same assignments are adopted in Adopted Gammas.
[#] For absolute intensity per 100 decays, multiply by 0.968 *13*.
[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

⁴⁴Ti ε decay (59.1 y) 1991We08,1990Sc08,1988Al27

Decay Scheme

 $^{44}_{21}{
m Sc}_{23}$