## $^{28}$ Si( $^{19}$ F,2pn $\gamma$ ) 1974Ko22

| History         |                           |                  |                        |  |  |  |  |
|-----------------|---------------------------|------------------|------------------------|--|--|--|--|
| Туре            | Author                    | Citation         | Literature Cutoff Date |  |  |  |  |
| Full Evaluation | Jun Chen and Balraj Singh | NDS 190,1 (2023) | 20-Jun-2023            |  |  |  |  |

1974Ko22: E=45-55 MeV <sup>19</sup>F beam produced from the BNL MP-tandem accelerators. Targets are natural <sup>28</sup>Si.  $\gamma$  rays were detected with Ge(Li) detectors. Measured  $E\gamma$ ,  $\gamma(\theta)$ ,  $\gamma\gamma$ -coin,  $\gamma(\text{lin pol})$ , recoil distance. Deduced levels, J,  $\pi$ ,  $T_{1/2}$  using the Recoil Distance Method (RDM).

All data are from 1974Ko22, unless otherwise noted.

## <sup>44</sup>Sc Levels

| E(level) <sup>†</sup> | $J^{\pi \ddagger}$ | $T_{1/2}^{\#}$ | Comments                             |
|-----------------------|--------------------|----------------|--------------------------------------|
| 0.0                   | 2+                 |                |                                      |
| 67                    | 1-                 |                |                                      |
| 146                   | 0-                 |                |                                      |
| 234.85 25             | $2^{-}$            |                |                                      |
| 271.16 15             | 6+                 | 58.61 h 10     | $T_{1/2}$ : from the Adopted Levels. |
| 349.87 10             | 4+                 | 3.1 ns 3       |                                      |
| 424.77 8              | (3 <sup>-</sup> )  | 380 ps 40      |                                      |
| 531.7 <i>3</i>        | 3-                 | <35 ns         |                                      |
| 631.09 18             | 4-                 |                |                                      |
| 968.2 <i>3</i>        | 7+                 | <3.5 ps        |                                      |
| 1046.9? 2             |                    |                |                                      |
| 1197.44 12            | 5-                 |                |                                      |
| 1728.0 5              |                    |                |                                      |
| 2671.6 3              | $(9)^{+}$          | 1.7 ps 3       |                                      |
| 3567.1 <i>3</i>       | $(11)^{+}$         | 48.3 ps 17     |                                      |
| 3975.3 4              | (13 <sup>+</sup> ) |                | $J^{\pi}$ : from the Adopted Levels. |
| 4113 <i>1</i>         | (10, 11, 12)       | <0.35 ps       |                                      |

 $^\dagger$  From a least-squares fit to  $\gamma\text{-ray energies.}$ 

<sup>‡</sup> Proposed by 1974Ko22 based on  $\gamma(\theta)$  and  $\gamma(\ln \text{ pol})$  (1974Ko22). Exception is noted. <sup>#</sup> From RDM in 1974Ko22.

| $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\ddagger}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$  | $\mathrm{J}_f^\pi$ | Mult. <sup>#</sup> | Comments                                                                                                                                                         |
|------------------------|-------------------------|------------------------|----------------------|--------|--------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 167 <i>1</i>           |                         | 234.85                 | 2-                   | 67     | 1-                 |                    |                                                                                                                                                                  |
| 190.0 8                |                         | 424.77                 | $(3^{-})$            | 234.85 | 2-                 |                    |                                                                                                                                                                  |
| 206.4 5                |                         | 631.09                 | 4-                   | 424.77 | (3-)               | (M1)               | A <sub>2</sub> =-0.16 6                                                                                                                                          |
| 234.85 25              | 16.4 25                 | 234.85                 | 2-                   | 0.0    | 2+                 | (E1) <sup>@</sup>  | $A_2 = +0.07 4$ ; $A_4 = +0.03 4$ ; pol = -0.37 17                                                                                                               |
| 271.16 15              | 37.8 19                 | 271.16                 | 6+                   | 0.0    | 2+                 | Ē4                 | $A_2 = +0.04 8$ ; $A_4 = -0.10 6$ ; pol=+0.01 5                                                                                                                  |
| 281.2 2                | 11.5 17                 | 631.09                 | 4-                   | 349.87 | 4+                 | E1                 | $A_2 = +0.30 \ 11; A_4 = -0.02 \ 10; \text{ pol} = -0.64 \ 26$                                                                                                   |
| 296.84 20              |                         | 531.7                  | 3-                   | 234.85 | 2-                 | (M1)               | $A_2 = -0.30 \ 11; \ A_4 = -0.04 \ 9$                                                                                                                            |
| 349.87 10              | 38.2 19                 | 349.87                 | 4+                   | 0.0    | 2+                 | E2                 | $A_2 = +0.17 6$ ; $A_4 = -0.03 5$ ; pol=+0.31 9                                                                                                                  |
| 356.94 12              |                         | 424.77                 | (3 <sup>-</sup> )    | 67     | 1-                 | (E2)               | $A_2 = +0.13$ 7; $A_4 = +0.01$ 6                                                                                                                                 |
| 396.26 12              | 11.9 18                 | 631.09                 | 4-                   | 234.85 | 2-                 | E2                 | $A_2 = +0.23 4$ ; $A_4 = -0.10 3$ ; pol = +0.12 12                                                                                                               |
| 408.22 15              | 5.0 25                  | 3975.3                 | (13 <sup>+</sup> )   | 3567.1 | $(11)^{+}$         | (E2) <sup>@</sup>  | A <sub>2</sub> =+0.29 5; pol=+0.10 16                                                                                                                            |
| 424.74 12              | 3.6 18                  | 424.77                 | (3 <sup>-</sup> )    | 0.0    | 2+                 | (E1)               | $A_2 = -0.30 \ 9; \ pol = -0.5 \ 7$                                                                                                                              |
|                        |                         |                        |                      |        |                    |                    | Mult.: it seems that authors' assignment of (E1) is<br>inconsistent with the measured and predicted pol<br>values with the same sign which would indicate<br>M1. |
| 530.95 15              |                         | 531.7                  | 3-                   | 0.0    | 2+                 | (E1)               | $A_2 = -0.54 6$                                                                                                                                                  |
| 546 1                  |                         | 4113                   | (10,11,12)           | 3567.1 | $(11)^{+}$         | D                  | -                                                                                                                                                                |

 $\gamma(^{44}Sc)$ 

Continued on next page (footnotes at end of table)

## <sup>28</sup>Si(<sup>19</sup>F,2pnγ) **1974Ko22** (continued)

## $\gamma(^{44}Sc)$ (continued)

| ${\rm E_{\gamma}}^{\dagger}$                              | $I_{\gamma}^{\ddagger}$ | E <sub>i</sub> (level)      | $\mathbf{J}_i^{\pi}$                           | $E_f$                     | $\mathbf{J}_f^{\pi}$                                 | Mult. <sup>#</sup> | Comments                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------|-------------------------|-----------------------------|------------------------------------------------|---------------------------|------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 566.39 <i>15</i><br>681.1 <i>4</i>                        | 8.0 24                  | 1197.44                     | 5-                                             | 631.09                    | 4-                                                   | M1                 | A <sub>2</sub> =-0.97 7; A <sub>4</sub> =+0.04 4; pol=+0.20 <i>12</i><br>Mult.: it seems that authors' assignment of M1 is<br>inconsistent with the measured and predicted pol<br>values with the same sign which would indicate E1.<br>A <sub>2</sub> =+0.25 23                              |
| 697.04 <sup>&amp;</sup> 20                                | 114 <sup>&amp;</sup> 6  | 968.2                       | 7+                                             | 271.16                    | 6+                                                   | M1                 | A <sub>2</sub> =-0.39 4; A <sub>4</sub> =+0.03 3; pol=-0.19 4<br>$E_{\gamma}$ , $I_{\gamma}$ : authors of 1974Ko22 also place this $\gamma$ from<br>1146.9 level but that placement is not confirmed in<br>other studies. The intensity is probably mostly for<br>the transition placed here. |
| 697.04 <sup>&amp;a</sup> 20                               | 114 <sup>&amp;</sup> 6  | 1046.9?                     |                                                | 349.87                    | 4+                                                   |                    | $E_{\gamma}$ : the placement of this transition is not seen in<br>other studies and considered as questionable by the<br>evaluators. See the placement from 968.2 level.                                                                                                                      |
| 772.50 <i>15</i><br>848 <i>1</i>                          | 11.9 <i>1</i> 8         | 1197.44<br>1197.44          | 5-<br>5-                                       | 424.77<br>349.87          | (3 <sup>-</sup> )<br>4 <sup>+</sup>                  | E2                 | $A_2 = +0.11 \ 8; \ A_4 = -0.05 \ 7; \ pol = +0.22 \ 19$                                                                                                                                                                                                                                      |
| 895.49 <i>12</i><br>926.35 <i>15</i><br>1703.31 <i>20</i> | 71 4                    | 3567.1<br>1197.44<br>2671.6 | $(11)^+$<br>5 <sup>-</sup><br>(9) <sup>+</sup> | 2671.6<br>271.16<br>968.2 | (9) <sup>+</sup><br>6 <sup>+</sup><br>7 <sup>+</sup> | E2<br>(E1)<br>E2   | $A_2=+0.30 3$ ; $A_4=-0.12 3$ ; pol=+0.50 11<br>$A_2=-0.11 4$ ; $A_4=-0.04 8$<br>$A_2=+0.29 4$ ; $A_4=-0.12 3$ ; pol=+0.49 11                                                                                                                                                                 |

<sup>†</sup> From 1974Ko22.

<sup>‡</sup> From 1974Ko22. Original values have been normalized to  $I\gamma(1703\gamma)=100$  by the evaluators. Based on authors' generate statement of 1% to 15% for strong lines depending on peak separation and up to 50% for weak lines, the evaluators have assigned uncertainty as follows: 5% for  $I\gamma>30$ , 10% for  $I\gamma>20$ , 15% for  $I\gamma>10$ , 30% for  $I\gamma>5$  and 50% for  $I\gamma\leq5$ .

<sup>#</sup> From 1974Ko22 based on measured  $\gamma(\theta)$  and  $\gamma(\text{lin pol})$  (1974Ko22), unless otherwise noted. Predicted polarization also given under comments is calculated from measured  $\gamma(\theta)$  assuming pure M1 or E2 and the opposite sign compared to measured pol indicates pure E1 or M2 transition; the prediction is not valid for mixed transitions or for pure multipoles with L>2 (1974Ko22).

<sup>@</sup> Not given in 1974Ko22; assigned by the evaluators based on  $\gamma(\theta)$  and  $\gamma(\text{pol})$  compared with other assignments.

<sup>&</sup> Multiply placed with undivided intensity.

<sup>*a*</sup> Placement of transition in the level scheme is uncertain.



 $^{44}_{21}Sc_{23}$