⁹Be(⁴⁸Ca,⁴⁴Sγ) 2010Fo04,2005Gr30,2002So14

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Jun Chen and Balraj Singh	NDS 190,1 (2023)	20-Jun-2023						

2010Fo04: E=60 MeV/nucleon, LISE3 fragment separator at the GANIL facility. The fragments were analyzed by energy loss and magnetic rigidity using a multiwire proportional chamber. The ⁴⁴S nuclei were implanted in a 125 μ m thick kapton foil. A stack of Si detectors was used before the foil to adjust implantation depth and to reconstruct the position of ions. Measured delayed γ and electron spectra using two clover Ge detectors for γ rays and four Si(Li) detectors for electrons. Comparison with shell-model calculations. Two-level mixing model used to extract mixing between the two configurations. Evidence for prolate-spherical shape coexistence. 2011Ca04 conference report is from the same group as 2010Fo04.

2005Gr30: Fragmentation of ⁴⁸Ca beam at 60 MeV/nucleon. The fragments were separated using LISE3 spectrometer at the GANIL facility. The fragments were identified by energy loss and time-of-flight measurements using Si detectors. Measured γ , ce using a Si(Li) detector and two Ge clover detectors. Results are mentioned as preliminary by the authors.

2002So14 (also conference papers from the same group with similar results: 2002Az01, 2002Gu08, 2002Az02, 2000Az03, 2000So17): Fragmentation of a ⁴⁸Ca beam at 60.3 MeV/nucleon. The fragments were separated using SPEG spectrometer at the GANIL facility. The fragments were identified by energy loss and time-of-flight measurements using Si detectors. Measured (fragment) γ , $\gamma\gamma$ using three segmented Ge clover detectors and 74 BaF₂ detectors.

Many authors in 2005Gr30 and 2002So14 are common.

2004Gr20, 2003Gr22: Fragmentation of ⁴⁸Ca beam at 60 MeV/nucleon. The fragments were separated using the LISE3 spectrometer at the GANIL facility. The fragments were identified by energy loss and time-of-flight measurements using Si detectors. Measured γ , ce using a Si(Li) detector and two Ge clover detectors.

The results in 2005Gr30 are stated in the paper as preliminary.

⁴⁴S Levels

E(level) [†]	$J^{\pi \#}$	T _{1/2}	Comments
0.0 1329.0 5	0^+ 2 ⁺	100 ms 1	$T_{1/2}$: from 2004Gr20 and 2003Gr22. $T_{1/2}$ =117 ms 6 in the Adopted Levels.
1365 1	0+	2.619 μs 26	Values of B(E2) from 1329,2 ⁺ to 1365 level and ρ^2 for E0 transition are the lowest in this mass region which suggests weak mixing between the g.s. and the 0 ⁺ isomer and shape coexistence. Comparison with full <i>sd</i> (<i>fp</i>) shell-model calculations shows consistency with the experimental data. T _{1/2} : from time distribution of 1362.5 electron peak (2010Fo04). Other: 2.3 μ s 3 from ce(t) (2005Gr30)
1617 [‡] 7			J^{π} : 2002So14 proposed (0 ⁺) tentatively, but excited 0 ⁺ at 1365 keV is reported by 2005Gr30. Only one excited 0 ⁺ is predicted by shell-model calculations in this energy region which most likely corresponds to 1365 level.
2632 [‡] 11	(2 ⁺)		

 † From a least-squares fit to $\gamma\text{-ray energies}.$

[‡] Level from 2002So14 only.

[#] From the Adopted Levels, unless otherwise stated.

$\gamma(^{44}S)$

E _γ ‡	E _i (level)	\mathbf{J}_i^{π}	E _f J	f^{π}	Mult.	α^{\dagger}	$I_{(\gamma+ce)}^{\&}$	Comments
(36 1)	1365	0+	1329.0 2	2+	[E2]	9.7 11	56×10 ³ 3	B(E2) \downarrow =0.00084 26 (2010Fo04) ce(K)/(γ +ce)=0.83 4; ce(L)/(γ +ce)=0.070 11; ce(M)/(γ +ce)=0.0057 9 α (K)=8.9 10; α (L)=0.75 9; α (M)=0.060 7 E _{γ} : from 2010Fo04, below the threshold of γ spectrum. α : 2010Fo04 use a value of 10.94 1 which is extrapolated

Continued on next page (footnotes at end of table)

9 Be(48 Ca, 44 S γ) 2010Fo04,2005Gr30,2002So14 (continued) $\gamma(^{44}S)$ (continued) Ι_γ@ $I_{(\gamma+ce)}^{\&}$ α^{\dagger} E_{γ}^{\ddagger} E_i(level) J_i^{π} \mathbf{E}_{f} \mathbf{J}_{f}^{π} Mult. Comments from values in 1976Ba63, which are superseded by values calculated using the BrIcc program (2008Ki07). $I_{(\gamma+ce)}$: obtained from number of delayed 1329-keV γ rays, after correction for 1332.5 60Co contaminant line. 288[#] 7 80 1329.0 2+ 1617 988[#] 15 50 2632 (2^{+}) 1617 This γ was not used in the least-squares fit procedure, as the fit is poor with level-energy difference=1015 13 as compared to $E\gamma = 988$ 15, differing by about 2σ . 6.09×10^{-5} 9 $\alpha(K) = 2.289 \times 10^{-5} 32;$ 1329.0 5 100 1329.0 2^{+} $0.0 \quad 0^+$ [E2] $\alpha(L)=1.766\times10^{-6}$ 25; $\alpha(M)=1.489\times10^{-7}$ 21 α (IPF)=3.61×10⁻⁵ 5 E_{γ} : from 2010Fo04, contaminated by 1332.5 keV peak from ⁶⁰Co decay. Others: 1350 10 (2002So14), 1329 (2005Gr30). 347×10³ 19 1365 1 1365 0^{+} $0.0 \quad 0^+$ E0 E_{γ} : 1362.5 10 electron line from conversion electron spectrum (2005Gr30), transition not seen in γ -ray experiment. This transition, in addition to E0, also decays by internal pair formation indicated by the observation of time spectra measured in coincidence with 511 annihilation radiation. $I_{(\gamma+ce)}$: I(E0)(total) is deduced from $I(ce) = 148 \times 10^3 8$ and I(E0)(total)=I(ce)×[1+ $\Sigma_{IPF}/\Sigma_{ce}]$, where $\sigma_{\rm IPF}=1.495\times10^7 \text{ s}^-$ and $\Sigma_{ce}=1.1125\times10^7$ s⁻ are the decay rates of the E0 transition through the internal pair formation and internal conversion, respectively (2010Fo04). Monopole strength $\rho^2(E0)=0.0087$ 7 (2010Fo04). 2632 11 100 2632 (2^{+}) $0.0 \ 0^+$ [†] Additional information 2.

- [±] From 2010Fo04, unless otherwise noted.
- [#] From 2002So14 only.
- [@] From 2002So14, normalized to 100 for 1329γ .
- [&] From 2010Fo04.

