1 H(44 S,p' γ) **2019Ri03**

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Jun Chen and Balraj Singh	NDS 190,1 (2023)	20-Jun-2023			

2019Ri03: E=70.2 MeV/nucleon (midtarget) ⁴⁴S secondary beam was produced by fragmentation of a 140 MeV/nucleon ⁴⁸Ca primary beam from the Coupled-Cyclotron Facility at NSCL in a 1222 mg/cm² ⁹Be production target. Fragments were separated by the A1900 fragment separator and identified by time-of-flight and object position in the S800 spectrograph. The secondary target was liquid hydrogen contained in a cylindrical aluminum cell. γ rays were detected and tracked by the GRETINA array consisting of eight modules with each housing four 36-fold segmented HPGe crystals. Measured E γ , I γ , σ . Deduced levels, deformation length. Comparisons with shell model calculations.

⁴⁴S Levels

E(level) [†]	J ^{π‡}	Comments
0	0^{+}	
1329 <i>1</i>	2^{+}	σ =15 mb 3, giving deformation length=1.07 fm 16.
1385? 26	0^{+}	
2283 4	(2^{+})	σ =4.5 mb 8.
2479 11	(4^{+})	σ =2.7 mb 8.
3284 25	(2^{+})	σ =3.7 mb 7.
4027 13		σ =2.1 mb 5.

[†] From a least-squares fit to γ -ray energies.

[‡] From the Adopted Levels.

$\gamma(^{44}S)$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
954 <i>4</i> 1150 <i>11</i> 1329	17 <i>3</i> 11 <i>3</i> 100 <i>4</i>	2283 2479 1329	(2^+) (4^+) 2^+	1329 1329 0	2^+ 2^+ 0^+
1899 6 1955 25 2698 13 3076 10	13 2 2 2 8 2 8 2 8 2	3284 3284 4027	(2 ⁺) (2 ⁺)	1385? 1329 1329	$0^+ 2^+ 2^+$

 E_{γ} : uncertainty is not given in 2019Ri03 and is assumed as 5 keV in the least-squares fitting.

Comments

[†] From 2019Ri03.

 $x \gamma$ ray not placed in level scheme.

 1 H(44 S,p' γ) 2019Ri03

	Legend		
<u>Level Scheme</u> Intensities: Relative I_{γ}	$\begin{array}{c c} & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ \hline & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ \hline & I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$		

