Adopted Levels

History

Type Author Citation Literature Cutoff Date
Full Evaluation Jun Chen and Balraj Singh NDS 190,1 (2023) 20-Jun-2023

 $Q(\beta^{-})=20310 \text{ syst}$; S(n)=2000 syst; S(p)=20510 syst; $Q(\alpha)=-20140 \text{ syst}$ 2021Wa16

Estimated uncertainties (2021Wal6): 400 for $Q(\beta^-)$, 500 for S(n), 570 for S(p), and 500 for $Q(\alpha)$.

 $S(2n)=6130\ 410$, $S(2p)=45460\ 640$, $Q(\beta^-n)=15230\ 400$ (syst,2021Wa16). $Q(\beta^-2n)=12610\ 400$, $Q(\beta^-3n)=5910\ 400$, $Q(\beta^-4n)=1660\ 400$ deduced by evaluators from relevant mass excesses in 2021Wa16.

1989Gu03: ⁴⁴P first identified in ¹⁸¹Ta(⁴⁸Ca,X) E=55 MeV/nucleon reaction followed by measurement of fragment spectra using LISE spectrometer at GANIL facility.

2004Gr20, 2003Gr22: Fragmentation of ⁴⁸Ca beam at 60 MeV/nucleon with Be target. The fragments were separated using LISE3 spectrometer at GANIL facility. The fragment identification by energy loss and time-of-flight measurements using Si detectors. Measured *γ*, ce using a Si(Li) detector and two Ge clover detectors.

2022Cr03: ⁴⁴P was produced in ⁹Be(⁴⁸Ca,X),E(⁴⁸Ca)=172.3 MeV/nucleon at the FRIB, MSU, followed by separation of fragments of interest using Advanced Rare Isotope Separator (ARIS), and delivered to the FRIB Decay Station initiator (FDSi) consisting of fast-response YSO (yttrium orthosilicate, Y₂SiO₅) scintillator implantation detector, 11 HPGe clover detectors, 15 fast-timing LaBr₃ detectors, and 88 neutron detectors of the VANDLE array. Deduced particle identification plot of Z versus A/Q. Measured T_{1/2} of ⁴⁴P decay from (implants)β-correlated decay curve.

2022Tr03: 44 P produced in 9 Be(48 Ca,X),E(48 Ca)=140 MeV/nucleon, and reaction products separated by A1900 fragment separator at the NSCL-MSU facility. Selected isotopes were transported to the Beta Counting System (BCS) consisting of Double-Sided Silicon Strip Detector (DSSD), two Si PIN detectors, and 16 Clover HPGe detectors. Measured half-life of the decay of 44 P, $\%\beta^-$ n for the decay of 44 P by following the decay chain of 44 P through β^- and β^- n decay daughters, E γ .

Mass measurement: 2007Ju03.

2010Ga15: theory: calculated levels, J^{π} using shell model.

Theoretical calculations: two references for radioactive decays retrieved from the NSR database (www.nndc.bnl.gov/nsr/) are listed in document records which can be accessed via web-based ENSDF database.

Additional information 1.

⁴⁴P Levels

E(level) $T_{1/2}$

Comments

 $\%\beta^-=100$; $\%\beta^-=75$ 8 (2022Tr03); $\%\beta^-=2$?; $\%\beta^-=3$?; $\%\beta^-=3$? $T_{1/2}$; from time correlations between β rays and fragment implants in

 $T_{1/2}$: from time correlations between β rays and fragment implants in all the three studies; the adopted $T_{1/2}$ is weighted average of 18.8 ms I7 (2022Cr03, statistical uncertainty of 0.8 ms and systematic uncertainty of 1.5 ms added in quadrature); 18 ms I (2022Tr03); 18.5 ms 25 (2004Gr20,2003Gr22). % β -n from β , γ data (2022Tr03), by following the decay chain of 44 P through β - and β -n decay daughters,

Theoretical $T_{1/2}=14$ ms, $\%\beta^- n=55$, $\%\beta^- 2n=21$, $\%\beta^- 3n=0$ (2019Mo01).

Theoretical $T_{1/2}$ =53 ms, $\%\beta^-$ n=17.3, 17.7; $\%\beta^-$ 2n=18.6, 23.5; $\%\beta^-$ 3n=0.047, 0.11; $\%\beta^-$ 4n=0 (2021Mi17); two values for different fission barriers.