$C(^{46}K,pn\gamma)$ 1999Wa21

History

Type	Author	Citation	Literature Cutoff Date	
Full Evaluation	Jun Chen and Balraj Singh	NDS 190,1 (2023)	20-Jun-2023	

1999Wa21: E=210-280 MeV/nucleon ($v/c\approx0.6$) radioactive ion beam of 46 K produced by 9 Be(50 Ti,X) at E=330 MeV/nucleon and selected by the FRagment Separator (FRS) at GSI. Target of 0.54 g/cm² Carbon. A 4π γ-spectrometer, the Darmstadt-Heidelberg Crystal Ball (CB), of 153 individual NaI crystals (7% intrinsic resolution) for detecting γ-rays. Measured Eγ, Iγ, γγ-coin. Deduced levels.

⁴⁴Ar Levels

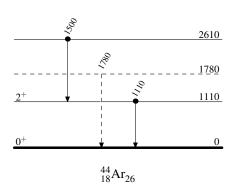
E(level)	J^{π}	Comments				
0	0^{+}					
1110 80	2+	J^{π} : from the Adopted Levels.				
1780? <i>80</i>		E(level): this level is uncertain since the 1780 80 γ may be the same as the 1817.7 γ from a 2976 level seen in ⁴⁴ Cl β ⁻ decay.				
		J^{π} : (2 ⁺) proposed from shell-model calculations.				
2.61×10 ³ 16		J^{π} : (4 ⁺) proposed from shell-model calculations. But a similar level fed in ⁴⁴ Cl β^- decay de-excites to 0 ⁺ which rules out 4 ⁺ . See the Adopted Levels, Gammas dataset.				

γ (44Ar

E_{γ}^{\dagger}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Comments
1110 80	1110	2+	0	0+	E_{γ} : 1158.1 <i>I</i> in ⁴⁴ Cl β ⁻ decay.
1500 80	2.61×10^3		1110	2+	E_{γ} : this γ may be the same as the 1588.1 γ seen in coincidence with 1158 γ in ⁴⁴ Cl β^- decay.
1780 [‡] <i>80</i>	1780?		0	0+	E _{γ} : this γ may be the same as the 1817.7 γ seen in coincidence with 1158 γ in ⁴⁴ Cl β ⁻ decay.

[†] Δ (Eγ)=80 keV assigned by the evaluators, based on level-energy uncertainties quoted by 1999Wa21. The Eγ values quoted here seem systematically lower by ≈50 keV when compared to precise Eγ available from ⁴⁴Cl β⁻ decay.

[‡] Placement of transition in the level scheme is uncertain.


Legend

C(⁴⁶K,pnγ) 1999Wa21

Level Scheme

---- γ Decay (Uncertain)

• Coincidence

