Be(58 **Ni**,**X** γ) **2011Ho02**

History

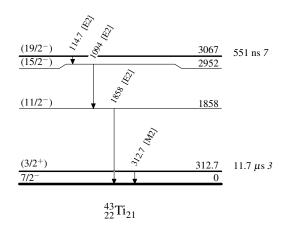
Type	Author	Citation	Literature Cutoff Date	
Full Evaluation	Balraj Singh and Jun Chen#	NDS 126, 1 (2015)	31-Mar-2015	

2011Ho02: $E(^{58}Ni)=550$ MeV/nucleon beam was produced from the UNILAC-SIS accelerator complex at the GSI Helmholtzzentrum fur Schwerionenforschung mbH, Darmstadt, Germany. Target of 4 g/cm² Be. Reaction products were separated by a 70 m long fragment separator (FRS) and identified by time-of-flight and energy loss in the MUSIC detectors. γ -rays were detected by 15 high-resolution and high-efficiency CLUSTER germanium detectors. Measured $E\gamma$, $I\gamma$. Deduced levels, $T_{1/2}$.

⁴³Ti Levels

E(level)	J^{π} †	T _{1/2}	Comments
0 312.7 2	7/2 ⁻ (3/2 ⁺)	11.7 μs 3	$T_{1/2}$: measured by 2011Ho02, γ (t). Adopted value of 11.9 μ s 3 is given in 2011Ho02 based on averaging current value with literature value taken from ENSDF database.
1858 2952	$(11/2^-)$ $(15/2^-)$		on allowing current talks with morning talks and a sound of the sound
3067	(19/2 ⁻)	551 ns 7	$T_{1/2}$: measured by 2011Ho02, γ (t). Adopted value of 556 ns 5 is given in 2011Ho02 based on averaging current value with literature value taken from ENSDF database.

[†] From Adopted Levels.


γ(⁴³Ti)

E_{γ}	$E_i(level)$	\mathtt{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments
114.7 2	3067	$(19/2^{-})$	2952	$(15/2^{-})$	[E2]	0.201 4	B(E2)(W.u.)=4.82 8
							$\alpha(K)=0.181 \ 3; \ \alpha(L)=0.0171 \ 3; \ \alpha(M)=0.00216 \ 4;$
21272	212.7	(2/2+)	0	7/2-	EM (2)	0.0040	$\alpha(N)=0.0001071 \ 17$
312.7 2	312.7	$(3/2^+)$	U	7/2-	[M2]	0.0048	B(M2)(W.u.)=0.072 2
							$\alpha(K)=0.00432\ 7;\ \alpha(L)=0.000400\ 6;\ \alpha(M)=5.12\times10^{-5}\ 8;$ $\alpha(N)=2.73\times10^{-6}\ 4$
1094	2952	$(15/2^{-})$	1858	$(11/2^{-})$	[E2]		$a(1)-2.75 \times 10^{-4}$
1858	1858	$(13/2^{-})$ $(11/2^{-})$		$7/2^{-}$	[E2]		

 $^{^{\}dagger}$ Additional information 1.

Be(⁵⁸**Ni,X**γ) **2011Ho02**

Level Scheme

