⁴⁴Cr εp decay (42.8 ms) 2007Do17,2014Po05

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Balraj Singh and Jun Chen [#]	NDS 126, 1 (2015)	31-Mar-2015		

Parent: ⁴⁴Cr: E=0; $J^{\pi}=0^+$; $T_{1/2}=42.8$ ms 6; $Q(\varepsilon p)=8400$ SY; % εp decay=12 2

⁴⁴Cr-T_{1/2}: From ⁴⁴Cr Adopted Levels in ENSDF database, taken from 2007Do17. Others: 25 ms +6-4 from 2014Po05 (time correlation of implantation events due to ⁴⁴Cr and subsequent emission of protons, and using the maximum likelihood method); 53 ms +4-3 (1992Bo37). All the three values are in disagreement. Unweighted average of three values is 40.3 ms 82, much nearer to the 2007Do17 value.

⁴⁴Cr-Q(εp): 8400 300 (syst,2012Wa38).

⁴⁴Cr-%εp decay: %εp=10 *1* (2014Po05), 14.0 9 (2007Do17). 2014Po05 discuss accuracy of results in the two measurements.

2007Do17: Fragmentation reaction used to produce ⁴⁴Cr isotope at SISSE/LISE3 facility in GANIL. Primary beam: ⁵⁸Ni²⁶⁺ at 74.5 MeV/nucleon; target=natural Ni. Fragment separator=ALPHA–LISE3. Fragment identification by energy loss, residual energy and time-of- flight measurements using two micro-channel plate (MCP) detectors and Si detectors. Double-sided silicon-strip detectors (DSSSD) and a thick Si(Li) detector were used to detect implanted events, charged particles and β particles. The γ -rays were detected by four Ge detectors. Coincidences measured between charged particles and γ -rays. T_{1/2} measured by time correlation of implantation events due to ⁴⁴Cr and subsequent emission of protons and γ -rays. Total proton branching ratio is from time spectrum of events with energy >900 keV in the charged-particle spectrum. Possible small contributions from delayed- α and delayed-2p decays are ignored.

2014Po05: ⁴⁴Cr isotope produced in fragmentation of Ni target with a ⁵⁸Ni beam at 160 MeV/nucleon from the NSCL, MSU facility. Fragments separated with the A1900 fragment separator and identified using time-of-flight and energy-loss techniques. The optical time projection chamber (OTPC) was used to detect fragments and the decay of heavy particles such as protons or α particles. Measured half-life of ⁴⁴Cr g.s. from time correlation of implantation events and subsequent emission of protons. Total proton branching ratio was measured based on incoming ions and decay events.

⁴³Ti Levels

E(level)

0

Delayed Protons (⁴³Ti)

E(p) [†]	E(⁴³ Ti)	I(p)	Comments	
742 26		0.6 2	E(p): reported by 2014Po05 only; uncertainty of 24 keV from minimization procedure and 10 keV	
			from drift velocity added in quadrature.	
1384 12		1.1 3	$E(p)=1340\ 62,\ I(p)=1.4\%\ 3\ (2014Po05).$	
1741 <i>15</i>		0.6 3	E(p)=1680 44, I(p)=0.5% 2 (2014Po05).	
908 11	0	1.7 3	$E(p)=896\ 53,\ I(p)=2.7\%\ 5\ (2014Po05).$	

[†] The proton energies are in the center-of-mass system.