⁴³Ti ε decay (509 ms) 1987Ho14

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh and Jun Chen [#]	NDS 126, 1 (2015)	31-Mar-2015					

Parent: ⁴³Ti: E=0; $J^{\pi}=7/2^{-}$; $T_{1/2}=509$ ms 5; $Q(\varepsilon)=6867$ 7; $\%\varepsilon+\%\beta^{+}$ decay=100.0

⁴³Ti-J^{π},T_{1/2}: From Adopted Levels of ⁴³Ti.

⁴³Ti-Q(ε): From 2012Wa38.

1987Ho14: ⁴³Ti nuclides were produced by the ⁴⁰Ca(α,n) reaction with an 18 MeV alpha beam from the MC-20 cyclotron of the University of Jyvaskyla. β-rays were detected by a 500 µm, 300 mm² Si(Au) surface-barrier detector and γ-rays by a 15.5% Ge detector. Measured Eγ, Iγ, E(β). Deduced levels, β- and γ-branchings, T_{1/2}. Comparison with shell-model calculations. Others:

T_{1/2} and isotopic identification: 1967Al08, 1963Va37, 1961Ja22 (also 1960Ja12), 1954Ty33, 1948Sc20.

 β^+ : 1969Va41 (also 1963Va37), 1961Ja22.

γ: 1971BlZH.

⁴³Sc Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0	7/2-	
151.25 14	3/2+	
472.7 [#] 3	3/2-	
845.17 9	5/2-	
1408.03 9	7/2-	
1882.5 <i>3</i>	$(5/2, 9/2)^{-}$	
1963.0 4	(3/2,5/2) ⁻	J^{π} : log <i>ft</i> =6.35 20 from 7/2 ⁻ parent state disfavors 3/2, but the level is weakly populated and this argument is not strong enough to reject 3/2 which is supported by L-transfers in other experiments.
2288.40 10	5/2-	
2335.47 10	5/2-	
2458.68 10	$(5/2 \text{ to } 9/2)^{-}$	
2760.10 10	$(5/2 \text{ to } 9/2)^{-}$	
3259.7 10	$(7/2, 9/2)^{-}$	
3631.7? 10	(5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻)	

[†] From least-squares fit to $E\gamma$ data.

[‡] From Adopted Levels.

[#] Intensity balance gives apparent β^+ feeding of 0.11% 6.

ε, β^+ radiations

There is an apparent β^+ feeding of 0.11% 6 to the 3/2⁻ at 472.7 giving an unrealistic log ft=6.3 for 7/2⁻ to 3/2⁻. This imbalance is due either to missing γ transitions to the 472.7 level or to intensity problems in the γ -rays involved. Due to the large difference between the Q-value and the energy of highest populated level, this decay scheme seems incomplete.

E(decay)	E(level)	$\mathrm{I}\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
(3235 [‡] 7)	3631.7?	0.016 4	0.00026 7	5.40 11	0.016 4	av Eβ=974.0 33; εK=0.01470 15; εL=0.001478 15; εM+=0.0002518 2
(3607 7)	3259.7	0.011 2	0.00011 2	5.86 8	0.011 2	av Eβ=1149.0 34; εK=0.00924 8; εL=0.000929 8; εM+=0.0001583 1
(4107 7)	2760.10	0.20 3	0.0012 2	4.94 7	0.20 3	av E β =1386.5 34; ε K=0.00546 4; ε L=0.000549 4; ε M+=9.34×10 ⁻⁵ 7

43 Ti ε decay (509 ms) 1987Ho14 (continued)

E(decay)	E(level)	$\mathrm{I}\!\beta^+$ †	$\mathrm{I}arepsilon^{\dagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger}$	Comments
(4408 7)	2458.68	0.91 13	0.0042 6	4.46 7	0.91 13	av E β =1530.9 34; ε K=0.00414 3; ε L=0.000416 3; ε M+=7.08×10 ⁻⁵ 5
(4532 7)	2335.47	0.38 6	0.0016 3	4.91 7	0.38 6	av Eβ=1590.1 34; εK=0.003718 23; εL=0.0003737 2; εM+=6.36×10 ⁻⁵ 4
(4579 7)	2288.40	4.6 7	0.018 3	3.85 7	4.6 7	av Eβ=1612.7 34; εK=0.003574 21; εL=0.0003592 2; εM+=6.12×10 ⁻⁵ 4
(4904 7)	1963.0	0.022 10	$7. \times 10^{-5} 3$	6.35 20	0.022 10	av Eβ=1769.5 34; εK=0.002755 15; εL=0.0002768 1; εM+=4.71×10 ⁻⁵ 3
(4985 7)	1882.5	0.26 5	0.00075 15	5.32 9	0.26 5	av Eβ=1808.4 34; εK=0.002592 14; εL=0.0002605 1; εM+=4.436×10 ⁻⁵ 24
(5459 7)	1408.03	0.67 10	0.0014 2	5.13 7	0.67 10	av E β =2038.5 34; ε K=0.001853 9; ε L=0.0001862 9; ε M+=3.171×10 ⁻⁵ 15
(6022 7)	845.17	2.6 4	0.0038 6	4.78 7	2.6 4	av E β =2312.8 35; ε K=0.001300 6; ε L=0.0001306 6; ε M+=2.225×10 ⁻⁵ 10
(6716 [‡] 7)	151.25	< 0.07	< 0.0001	>8.5 ¹ <i>u</i>	< 0.07	av E β =2663.5 34; ε K=0.001872 8; ε L=0.0001883 8; ε M+=3.207×10 ⁻⁵ 13
(6867 7)	0	90.2 14	0.0826 16	3.554 9	90.3 14	av E β =2726.7 35; ε K=0.000819 3; ε L=8.22×10 ⁻⁵ 3; ε M+=1.400×10 ⁻⁵ 5 I(ε + β ⁺): 100-summed feeding to higher levels.

 ϵ, β^+ radiations (continued)

[†] Absolute intensity per 100 decays.
[‡] Existence of this branch is questionable.

 $\gamma(^{43}Sc)$

I γ normalization: I γ (845 γ)(per 100 decays)=2.8 4, from comparison of γ -ray yield to the yield of 0.5-s component of γ^{\pm} radiation (1987Ho14).

Eγ	$I_{\gamma}^{\#}$	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}
(151.9)	2.9 [‡] 12	151.25	3/2+	0	$7/2^{-}$		
472.7 4	4.8 10	472.7	3/2-	0	$7/2^{-}$		
562.9 2	2.8 5	1408.03	7/2-	845.17	$5/2^{-}$		
845.2 1	62.9 19	845.17	5/2-	0	$7/2^{-}$	M1+E2	+0.15 4
880.7 5	1.1 2	2288.40	5/2-	1408.03	$7/2^{-}$		
936.0 8	1.0 2	1408.03	7/2-	472.7	3/2-		
1408.0 <i>1</i>	12.6 4	1408.03	$7/2^{-}$	0	$7/2^{-}$	M1+E2	+0.15 5
1443.5 <i>3</i>	1.3 <i>3</i>	2288.40	5/2-	845.17	$5/2^{-}$		
1490.2 2	0.5 2	1963.0	$(3/2, 5/2)^{-}$	472.7	$3/2^{-}$	M1+E2	+0.21 6
1815.4 4	0.9 5	2288.40	5/2-	472.7	$3/2^{-}$		
1882.5 <i>3</i>	5.9 8	1882.5	$(5/2, 9/2)^{-}$	0	$7/2^{-}$		
2137.1 <i>I</i>	2.1 4	2288.40	5/2-	151.25	$3/2^{+}$		
2288.3 1	100 4	2288.40	$5/2^{-}$	0	$7/2^{-}$	M1+E2	+0.08 5
2335.4 1	8.7 7	2335.47	5/2-	0	$7/2^{-}$		
2458.6 1	20.7 8	2458.68	$(5/2 \text{ to } 9/2)^{-}$	0	$7/2^{-}$		
2760.0 1	4.5 <i>3</i>	2760.10	$(5/2 \text{ to } 9/2)^{-}$	0	$7/2^{-}$		
3259.6 10	0.24 4	3259.7	$(7/2, 9/2)^{-}$	0	$7/2^{-}$		
3631.5 [@] 10	0.36 6	3631.7?	(5/2-,7/2-,9/2-)	0	7/2-		

[†] Multipolarities and mixing ratios from Adopted Gammas.

$^{43}\mathrm{Ti}\,\varepsilon$ decay (509 ms) 1987Ho14 (continued)

 $\gamma(^{43}Sc)$ (continued)

[‡] Estimated (evaluators) from log $f^{lu}t>8.5$ and I $\gamma(2137\gamma)$. [#] For absolute intensity per 100 decays, multiply by 0.044 *6*. [@] Placement of transition in the level scheme is uncertain.

