⁴⁶Ti(p,*α*),(pol p,*α*) **1982Ab03,1981Bo37,1965Pl01**

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Balraj Singh and Jun Chen [#]	NDS 126, 1 (2015)	31-Mar-2015		

1982Ab03: (p, α) E=40.35 MeV proton beam was produced from the University of Manitoba sector-focused cyclotron. Target of 81.2% enriched Ti metal. α particles were detected by 6 counter telescopes of Δ E-E silicon surface barrier detectors, FWHM=70-80 keV. Measured $\sigma(E_{\alpha},\theta)$. Deduced levels, J, π from DWBA analysis.

1981Bo37: (pol p, α) E=79.2 MeV polarized proton beam was produced from the Indiana University Cyclotron Facility (IUCF). Target of self-supporting enriched Ti foils. α particles were momentum analyzed with the IUCF QDDM magnetic spectrograph and detected in the 1 m long focal plane detector, FWHM=80-100 keV. Measured $\sigma(\alpha, \theta)$ and $A_y(\theta)$. Deduced levels, J, π from DWBA calculations.

1965Pl01: (p, α) E=10 MeV proton beam was produced from the Florida State University Tandem Van de Graaff accelerator. Target of TiO₂ on a carbon backing. α particles were momentum analyzed with a broad range magnetic spectrograph and detected on 50 μ m thick Kodak-NTA emulsions. Measured $\sigma(E_{\alpha},\theta)$. Deduced levels.

1971NoZX: (p, α) E=30 MeV. Measured $\sigma(\theta)$.

⁴³Sc Levels

 σ (theory)=N× σ (DWBA), where N=47.2×10⁶ to give 1.0 for g.s.

E(level) [†]	\mathbf{J}^{π}	Relative cluster factors ^b	Comments
0 151 <i>3</i> 479 5	7/2 ^{-&a} 3/2 ^{+a}	1.2	$\sigma(\exp)/\sigma(\text{theory})=1.0.$ $\sigma(\exp)/\sigma(\text{theory})=0.75.$
840 [‡] 856 8 884 8	$5/2^{-\&}$ $1/2^{+a}$		$\sigma(\exp)/\sigma(\text{theory})=2.5.$
1188 <i>8</i> 1400 1640 [‡]	7/2 ^{-a} 5/2 ⁺ &		$\sigma(\exp)/\sigma(\text{theory})=0.1.$
1830 2130 [@] 2250 [@] 2650 [@]	11/2 ^{-&a}	0.27	$\sigma(\exp)/\sigma(\text{theory})=1.8.$
2870 2870	(5/2 ⁺ ,9/2 ⁺) [#]		J ^π : $\sigma(\theta)$ (1982Ab03) fits 7/2 ⁺ . $\sigma(\exp)/\sigma(\text{theory})=5.5.$
2990	15/2 ^{-&}	0.67	$\sigma(\exp)/\sigma(\text{theory})=1.2.$
3120 3470 [@] 3810 [@]	19/2 ^{-&}	1.0	$\sigma(\exp)/\sigma(\text{theory})=0.5.$
4180 [‡] 4230	$(9/2^+, 13/2^+)^{\#}$ $7/2^{-a}$		$\sigma(\exp)/\sigma(\text{theory})=1.1.$
4360 [‡]	17/2-	≤0.11	J^{π} : poor fit of $\sigma(\theta)$ and $Ay(\theta)$ data in (pol p, α) to $17/2^{-}$ due probably to contribution from other levels in the vicinity or to complex reaction mechanism.
4550? [‡] 4700 [‡] 5200 [‡] 5230 6220	$(11/2^+, 13/2^-)^{\#}$ $(15/2^+)^{\#}$ $17/2^{+\#}$ $3/2^{+a}$ $1/2^{+a}$	0.34	,

Continued on next page (footnotes at end of table)

⁴⁶Ti(p,α),(pol p,α) **1982Ab03,1981Bo37,1965Pl01** (continued)

⁴³Sc Levels (continued)

[†] From 1965Pl01 for levels below 1200. Above this energy, values are from 1982Ab03, unless otherwise indicated.

- [‡] From 1981Bo37.
- [#] From Ay(θ) in (pol p, α).
- [@] From spectrum figure of 1982Ab03.
- & $\sigma(\theta)$ and Ay(θ) data in (pol p, α) are consistent with the assigned J^{π} .
- ^{*a*} From comparison of $\sigma(\theta)$ with DWBA calculations (1982Ab03).
- ^b From 1981Bo37, normalized to 1.0 for 19/2⁻, 3120 state.