Adopted Levels, Gammas

History						
Type Author		Citation	Literature Cutoff Date			
Full Evaluation	Balraj Singh and Jun Chen [#]	NDS 126, 1 (2015)	31-Mar-2015			

 $Q(\beta^{-})=12.13\times10^{3}$ 10; S(n)=2629 6; S(p)=20.49×10^{3} 21; Q(α)=-16940 90 2012Wa38

S(2n)=9330 6, S(2p)=38890 370, Q(β⁻n)=4650 140 (2012Wa38).

First identification of ⁴³S nuclide by 1979We10.

⁴³S isotope produced and identified in ⁹Be(⁴⁸Ca,X) E=212 MeV/nucleon (1979We10); ¹⁸¹Ta(⁴⁸Ca,X) (1989Le16) and Th(p,X) E=800 MeV (1991Zh24), followed by measurement of fragment spectra. Measured (1989Le16) $\%\beta^-$ n, T_{1/2}.

2012Ch16: TDPAD method used to measure spectroscopic quadrupole moment of $7/2^{-1}$ isomeric state of ⁴³S at 320.5 keV. E=345 MeV/nucleon beam produced at RIKEN-RBF facility using BigRIPS spectrometer for fragment separation. ^{43m}S fragments were selected and implanted in Cu host. The g factor was first measured to validate the method. The 320.5-keV γ -ray was measured using four HPGe detectors. Time spectrum of each detector was used to generate R(t) function.

Mass measurement: 2012Ga45, 2009Ri12, 2007Ju03, 2000Sa21, 1991Zh24.

Mean-square radius from energy-integrated cross sections: 2006Kh08.

Structure calculations: 2011Ka03, 2010Ga15, 2009Ha02.

⁴³S Levels

Cross Reference (XREF) Flags

⁴³ S	IT	decay	(415	ns)
-----------------	----	-------	------	-----

- **B** ${}^{9}\text{Be}({}^{44}\text{S},\text{X}\gamma)$
- C ${}^{9}\text{Be}({}^{45}\text{Cl},X\gamma)$

. .

D Coulomb excitation

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0#	(3/2 ⁻)	265 ms 15	ABCD	$%\beta^-=100; ~%\beta^-n=40 ~10 ~(1989Le16)$ Configuration= $\nu p_{3/2}$. This state is found to be part of well deformed K=1/2 decoupled rotational band from shell-model calculations. J ^π : 3/2 ⁻ proposed from shell-model (2000Sa21,2009Ri11,2009Ga05); 7/2 ⁻ proposed (1999Ib01) from syst. T _{1/2} : weighted average of 282 ms 27 (2004Gr20) and 260 ms 15 (1998WiZV), from $\beta(^{43}S)$ time correlation measurements. Other: 220 ms +80-50 (1989Le16).
320.7 5	(7/2 ⁻)	415 ns 5	Α	 Measured mean-square radius (r₀²)=1.22 fm² 6 (2006Kh08). μ=-1.110 14 (2009Ga05,2014StZZ) Q=0.23 3 (2012Ch16,2014StZZ) T_{1/2}: from 2009Ga05. Other: 0.48 μs 5 (2000Sa21). J^π: 7/2⁻ proposed from shell-model calculations (2000Sa21); also from agreement of g(Schmidt)=-0.546 for vf_{7/2} with the experimental value (2009Ga05). μ: from g factor=-0.317 4 (2009Ga05) by TDPAD method, the uncertainty includes the statistical and that in the magnetic field. Q: TDPAD method (2012Ch16). This value is significantly larger than predicted by single-particle state which suggests that the isomer is not a spherical state (2012Ch16). only the magnitude is known, not the sign.
970 [#] 5	$(5/2^-, 7/2^-)^{\ddagger}$		BCD	(2012en10), only the magnitude is known, not the sight
1153 [#] 5	$(5/2^-, 7/2^-)^{\ddagger}$		BC	
2616 9	$(7/2^{-})^{\ddagger}$		В	

Adopted Levels, Gammas (continued)

⁴³S Levels (continued)

 $\gamma(^{43}S)$

[†] From least-squares fit to $E\gamma$ data. [‡] Proposed from shell-model calculations (2009Ri11).

[#] Band(A): Ground-state band.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.	Comments
320.7	(7/2 ⁻)	320.7 [‡] 5		0	(3/2-)	[E2]	 B(E2)(W.u.)=0.040 4 B(E2)↓=0.357×10⁻⁴ 36 (2001Sa72) B(E2)=0.517×10⁻⁴ 52 in 2000Sa21 (same group as 2001Sa72) seems a misprint. E_γ: from ⁴³S IT decay. This γ either feeds the g.s. or a very close-lying level of energy <50 keV. Mult.: for mult=M1 or E1, deduced hindrance factors are unrealistically large. Mult=E2 would be compatible with the measured lifetime.
970	$(5/2^-, 7/2^-)$	971 6	100	0	$(3/2^{-})$		*
1153	(5/2-,7/2-)	183 <i>I</i>	53 <i>3</i>	970	$(5/2^-, 7/2^-)$		
		1154 7	100	0	$(3/2^{-})$		
2616	(7/2 ⁻)	1468 9 2600 <i>16</i>	53 1007	1153 0	$(5/2^-, 7/2^-)$ $(3/2^-)$		

[†] From ${}^{9}\text{Be}({}^{44}\text{S},X\gamma)$ unless otherwise noted. [‡] Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

Legend

```
Level Scheme
```


 γ Decay (Uncertain)

Adopted Levels, Gammas

 $^{43}_{16}S_{27}$