⁹Be(45 Cl,Χ γ) **2009Ri11**

History								
Type	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh and Jun Chen#	NDS 126, 1 (2015)	31-Mar-2015					

2009Ri11: E=98 MeV/nucleon 45 Cl beam was produced by fragmentation of a 140 MeV/nucleon 48 Ca on a 9 Be fragmentation target and incident on a target of 376 mg/cm² thick 9 Be. Fragments (84% 44 S, 14% 45 Cl) were separated by the A1900 separator and identified by the time-of-flight and energy loss in the S800 ionization chamber; γ -rays were detected by the Segmented Germanium Array (SeGA). Measured E γ , I γ , $\gamma\gamma$ -coin. Deduced levels, J, π , branching ratios and rotational band. Comparisons with shell-model calculations.

This dataset shares the γ -energies with the dataset of ${}^{9}\text{Be}({}^{44}\text{S},\text{X}\gamma)$.

⁴³S Levels

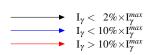
E(level) [†]	$J^{\pi \ddagger}$		
0#	3/2-		
971 [#] 5	$(5/2^-,7/2^-)$		
1154 [#] 5	$(5/2^-,7/2^-)$		

 $^{^{\}dagger}$ From least-squares fit to E γ data.

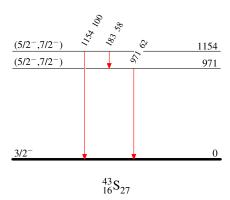
 $\gamma(^{43}S)$

E_{γ}	I_{γ}	$E_i(level)$	\mathtt{J}_{i}^{π}	\mathbf{E}_f	$_{J_f^\pi}$
183 <i>I</i>	58 12	1154	$(5/2^-,7/2^-)$	971	$(5/2^-,7/2^-)$
^x 231 <i>1</i>	8 5				
^x 459 3	10 7				
x621 4	34 11				
^x 770 5	15 <i>10</i>				
x849 5	23 12				
971 6	62 17	971	$(5/2^-,7/2^-)$	0	$3/2^{-}$
^x 1060 5	40 15				
1154 7	100	1154	$(5/2^-,7/2^-)$	0	$3/2^{-}$
^x 1203 7	51 <i>15</i>				
^x 1529 9	93 22				

 $^{^{}x}$ γ ray not placed in level scheme.

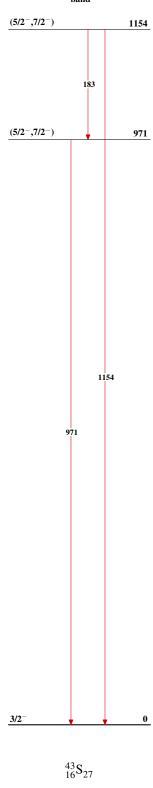

[‡] From comparisons with shell-model calculations.

[#] Band(A): ground state rotational band.


⁹Be(⁴⁵Cl,Χγ) **2009Ri11**

Level Scheme

Intensities: Relative I_{γ}



Legend

⁹Be(⁴⁵Cl,Χγ) **2009Ri11**

Band(A): Ground state rotational band

