⁹Be(⁴⁴S,⁴³Pγ) 2008Ri04,2006Fr13

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh and Jun Chen [#]	NDS 126, 1 (2015)	31-Mar-2015					

One-proton knockout reaction.

2008Ri04: E=91.7 MeV/nucleon ⁴⁴S beam was produced by the Coupled Cyclotron facility at NSCL by fragmentation of 140 MeV/nucleon ⁴⁸Ca beam on a 705 mg/cm² ⁹Be fragmentation target and incident on a ⁹Be 376 mg/cm² reaction target. Fragments were separated by the A1900 fragment separator and S800 magnetic spectrograph. Projectiles were identified by time-of-flight and energy loss in the S800 ion chamber and γ -rays were detected by a 32-fold segmented high-purity germanium detector array (SeGA). Measured E γ , I γ , $\gamma\gamma$. Deduced levels, J, π . Comparisons with shell-model calculations.

2007Ba47: $E(^{44}S)=39$ MeV/nucleon secondary beam produced from primary beam of 48 Ca produced at GANIL facility with E=60 MeV/nucleon. Fragments separated using ALPHA spectrometer. Decay residue identified using time-of-flight and energy loss measurements. Measured E γ , I γ using an array of 74 BaF₂ crystals arranged in two hemispheres above and below the ⁹Be target.

2006Fr13 (also 2005Fr19): $E(^{44}S)=98.6$ MeV/nucleon secondary beam produced from fragmentation of 48 Ca beam at 140 MeV/nucleon with a 9 Be target. Fragments were separated by A1900 separator at NSCL, Michigan State University (MSU) facility. The 44 S beam impinged another 9 Be target and the residues were analyzed by S800 spectrograph. The knockout residues were identified by time-of-flight, energy loss measurement, position and angle information. The γ -rays were detected in coin with knockout residues of 43 P using SeGA array of highly-segmented HPGe detectors. Shell-model calculations.

All data from 2008Ri04 unless otherwise noted.

⁴³P Levels

E(level) [†]	$J^{\pi \#}$	L‡	$\sigma \text{ (mb)}^{b}$
0	$1/2^+$ @	0	2.3 4
184 <i>1</i>	3/2+&	2	3.1 3
845 <i>3</i>	$(5/2^+)^a$		0.37 7
1009 5	$(5/2^+)^a$	2	0.8 2
1095 6	$(5/2^+)^a$	2	1.9 2
1774 8	$(5/2^+)$		0.4 1
2035 11	$(5/2^+)^a$		0.7 2

[†] From least-squares fit to $E\gamma$ data (by evaluators).

[‡] From parallel momentum distributions and comparison with eikonal-model calculations.

[#] From comparisons of experimental data with shell-model calculations.

[@] Configuration=2s_{1/2}.

& Configuration=1d_{3/2}.

^{*a*} Configuration= $1d_{5/2}$.

^b Partial cross section.

Eγ	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}
184 <i>I</i>	100	184	3/2+	0	1/2+
661 4	8 1	845	$(5/2^+)$	184	$3/2^{+}$
765 6	3.9 6	1774	$(5/2^+)$	1009	$(5/2^+)$
825 5	17 <i>1</i>	1009	$(5/2^+)$	184	$3/2^{+}$
845 <i>4</i>	2.7 7	845	$(5/2^+)$	0	$1/2^{+}$
911 6	25 1	1095	$(5/2^+)$	184	$3/2^{+}$
1018 [†] 6	51	2035	$(5/2^+)$	1009	$(5/2^+)$
1851 <i>11</i>	71	2035	$(5/2^+)$	184	$3/2^{+}$

[†] Placement of transition in the level scheme is uncertain.

$\gamma(^{43}P)$

