⁴¹K(³He,p) **1968Do02**

History						
Type	Author	Citation	Literature Cutoff Date			
Full Evaluation	Balraj Singh and Jun Chen#	NDS 126, 1 (2015)	31-Mar-2015			

 $J^{\pi}(^{41}\text{K g.s.})=3/2^{+}.$

1968Do02: E=13.0 MeV 3 He beam was produced at the Laboratory for Nuclear Science. Target of enriched 41 KI (99.18%) on a thin carbon backing, thickness of 78 μ g/cm 2 . Protons were analyzed with the MIT multiple gap spectrograph. Measured σ (E_p, θ) for transitions up to 9 MeV excitation. A total of 28 groups reported up to 9 MeV excitation. Deduced levels, J, π , L from DWBA analysis.

⁴³Ca Levels

E(level)	L	$d\sigma/d\Omega (\mu b/sr)^{\dagger}$	Comments
0‡		10 [‡]	
990	0	18	Weak population is consistent with configuration= $1f_{7/2}^4 1d_{3/2}^{-1}$, J=3/2, T=3/2 as proposed by 1966Do02 in (d,p).
1393?		<4	Very weak population suggests a configuration more complicated than $1f_{7/2}^4 1d_{3/2}^{-1}$; J=3/2, T=3/2, proposed by 1966Do02 in (d,p).
2050 [‡]		10 [‡]	1/2 3/2
2270 [‡]		15 [‡]	
2843	0	46	Strongest transition below 6 MeV. Strong population relative to the 990 group is consistent with configuration= $1f_{7/2}^4 1d_{3/2}^{-1}$; $J^{\pi}=3/2^+$, T=3/2.
3100 [‡]		15 [‡]	- 1/2 3/2
3300 [‡]		30 [‡]	
3916	2	10 [‡]	Similarity to 4984, 9/2 ⁺ state in ⁴¹ Ca indicates 4p-1h component in this level.
6300 [‡]		40 [‡]	
6410 [‡]		30 [‡]	
6460 [‡]		45 [‡]	
6570 [‡]		30 [‡]	
6640 [‡]		60 [‡]	
6680 [‡]		60 [‡]	
6790 [‡]		100 [‡]	
6950 [‡]		80 [‡]	
7040 [‡]		50 [‡]	
7090 [‡]		80 [‡]	
7190 [‡]		160 [‡]	
7500 [‡]		190 [‡]	
7570 [‡]		80 [‡]	
7730 [‡]		80 [‡]	
7920 [‡]		95 [‡]	
8033 <i>30</i>	0	640 [‡]	T=5/2 IAS of ⁴³ K ground state.
8160 [‡]		35 [‡]	
8270 [‡]		45 [‡]	
8470 [‡]		110 [‡]	
8930 [‡]		90 [‡]	

[†] At θ =7.5°

1

[±] Approximate value read from a plot (in 1968Do02) of excitation energy versus $d\sigma/d\Omega$. Uncertainty in level energy is estimated at \approx 30 keV.