⁴¹K(³He,p) **1968Do02** | History | | | | | | | |-----------------|----------------------------|-------------------|------------------------|--|--|--| | Type | Author | Citation | Literature Cutoff Date | | | | | Full Evaluation | Balraj Singh and Jun Chen# | NDS 126, 1 (2015) | 31-Mar-2015 | | | | $J^{\pi}(^{41}\text{K g.s.})=3/2^{+}.$ 1968Do02: E=13.0 MeV 3 He beam was produced at the Laboratory for Nuclear Science. Target of enriched 41 KI (99.18%) on a thin carbon backing, thickness of 78 μ g/cm 2 . Protons were analyzed with the MIT multiple gap spectrograph. Measured σ (E_p, θ) for transitions up to 9 MeV excitation. A total of 28 groups reported up to 9 MeV excitation. Deduced levels, J, π , L from DWBA analysis. ## ⁴³Ca Levels | E(level) | L | $d\sigma/d\Omega (\mu b/sr)^{\dagger}$ | Comments | |-------------------|---|--|---| | 0‡ | | 10 [‡] | | | 990 | 0 | 18 | Weak population is consistent with configuration= $1f_{7/2}^4 1d_{3/2}^{-1}$, J=3/2, T=3/2 as proposed by 1966Do02 in (d,p). | | 1393? | | <4 | Very weak population suggests a configuration more complicated than $1f_{7/2}^4 1d_{3/2}^{-1}$; J=3/2, T=3/2, proposed by 1966Do02 in (d,p). | | 2050 [‡] | | 10 [‡] | 1/2 3/2 | | 2270 [‡] | | 15 [‡] | | | 2843 | 0 | 46 | Strongest transition below 6 MeV. Strong population relative to the 990 group is consistent with configuration= $1f_{7/2}^4 1d_{3/2}^{-1}$; $J^{\pi}=3/2^+$, T=3/2. | | 3100 [‡] | | 15 [‡] | - 1/2 3/2 | | 3300 [‡] | | 30 [‡] | | | 3916 | 2 | 10 [‡] | Similarity to 4984, 9/2 ⁺ state in ⁴¹ Ca indicates 4p-1h component in this level. | | 6300 [‡] | | 40 [‡] | | | 6410 [‡] | | 30 [‡] | | | 6460 [‡] | | 45 [‡] | | | 6570 [‡] | | 30 [‡] | | | 6640 [‡] | | 60 [‡] | | | 6680 [‡] | | 60 [‡] | | | 6790 [‡] | | 100 [‡] | | | 6950 [‡] | | 80 [‡] | | | 7040 [‡] | | 50 [‡] | | | 7090 [‡] | | 80 [‡] | | | 7190 [‡] | | 160 [‡] | | | 7500 [‡] | | 190 [‡] | | | 7570 [‡] | | 80 [‡] | | | 7730 [‡] | | 80 [‡] | | | 7920 [‡] | | 95 [‡] | | | 8033 <i>30</i> | 0 | 640 [‡] | T=5/2 IAS of ⁴³ K ground state. | | 8160 [‡] | | 35 [‡] | | | 8270 [‡] | | 45 [‡] | | | 8470 [‡] | | 110 [‡] | | | 8930 [‡] | | 90 [‡] | | | | | | | [†] At θ =7.5° 1 [±] Approximate value read from a plot (in 1968Do02) of excitation energy versus $d\sigma/d\Omega$. Uncertainty in level energy is estimated at \approx 30 keV.