Adopted Levels, Gammas

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh and Jun Chen [#]	NDS 126, 1 (2015)	31-Mar-2015				
$(59, 9, 8(x), 14, 20, 10^3, 14, 0(x), 11070, 50, 2010W-29$							

 $Q(\beta^{-})=4566\ 5;\ S(n)=5658\ 8;\ S(p)=14.39\times10^{3}\ 14;\ Q(\alpha)=-11270\ 50$ 2012Wa38

S(2n)=15085 5, S(2p)=27579 7 (2012Wa38).

First identification of 43 Ar nuclide by 1969Ha03.

1971Ar32: ²³²Th(⁴⁰Ar, X), E=290 MeV; measured fragments isotopic yields.

2005B133: measured charge radii.

2007Na31: ¹³⁶Xe(p,X) production cross sections.

Mean-square radius from energy-integrated cross sections: 1999Ai02, 1997Li15.

Mass measurements: 2001He29.

2008Bl01: mass-separated ⁴³Ar ion beam obtained from spallation of Ti by 1.4 GeV beam provided by CERN synchrotron

followed by on-line mass separation at ISOLDE-CERN facility. Measured spins, isotope shifts, hyperfine structure, mean-square charge radii, magnetic dipole and electric quadrupole moments by fast beam collinear laser spectroscopy using highly sensitive ion detection of optical resonance. Comparisons with spherical Skyrme-type Hartree-Fock mean-field calculations. Structure calculations: 2011Ka03, 2007Sh10, 1991Wa19, 1987Sa19, 1974Gl04.

⁴³Ar Levels

Cross Reference (XREF) Flags

			A B C	${}^{43}\text{Cl} \beta^{-} \text{decay (3.13 s)} \mathbf{D} \qquad {}^{48}\text{Ca}(\alpha, {}^{9}\text{Be}) \\ {}^{1}\text{H}({}^{43}\text{Ar}, p') \qquad \mathbf{E} \qquad {}^{208}\text{Pb}({}^{40}\text{Ar}, X\gamma) \\ {}^{9}\text{Be}({}^{36}\text{S}, 2p\gamma) \qquad \qquad$
E(level)	J^{π}	T _{1/2}	XREF	Comments
0	5/2 ⁽⁻⁾	5.37 min 6	ABCDE	%β ⁻ =100 μ=-1.021 6 (2008Bl01,2014StZZ) Q=+0.142 14 (2008Bl01,2014StZZ) Evaluated rms charge radius=3.4414 fm 41 (2013An02). μ,Q: fast beam collinear laser spectroscopy using highly sensitive ion detection of optical resonance. Statistical uncertainty=0.002 and systematic uncertainty of 10% in Q due to electric field gradient and Sternheimer shielding correction are combined in quadrature. Isotope shift (³⁸ Ar, ⁴³ Ar)=556.7 MHz 23 (2008Bl01); statistical uncertainty=1.4, systematic uncertainty=1.8. Measured mean-square radius (r ₀ ²)=1.23 fm ² 8 (beam energy=50 MeV/nucleon, 1999Ai02), 1.31 fm ² 7 (beam energy=90 MeV/nucleon, 1999Ai02), 1.23 fm ² 3 (beam energy=70 MeV/nucleon, 1997Li15). The rms charge radius (<r<sup>2>)^{1/2}=3.4415 fm 23 from δ<r<sup>2>(³⁸Ar,⁴³Ar)=+0.221 fm² 14(stat) 66(syst) (2008Bl01, laser spectroscopy). J^π: from laser spectroscopy in 2008Bl01. Hyperfine structure intervals and relative amplitudes of the resonances firmly establish 5/2. log <i>ft</i>=6.6 (log <i>f</i>^{4u}<i>t</i><8.5) to 3/2⁻ and log <i>ft</i>=6.2 to 5/2⁺ give 3/2 or 5/2. log <i>ft</i>=7.8 to 7/2⁻ and log <i>ft</i>=7.9 to 7/2⁺ make 3/2 less likely. Model arguments as discussed by 1999Ma89 propose 5/2⁻ or 7/2⁻ from systematics of N=23 and 25 nuclides. Possible configuration= πd^{-3/2}γt^{-3/2}₋₁ (1999Ma89). T_{1/2}: from 1970Hu11 (β and γ activity measurements). Other: 5.35 min 15 (β decay, 1969Ha03), 6.5 min 18 (1969La16).</r<sup></r<sup>
0+x 201.27? <i>16</i>	(7/2 ⁻) (7/2 ⁻)		E C	 E(level): predicted value of x≈100 keV (2011Sz02), 200 keV (2009Mo09). E(level): this level was proposed only in 2009Mo09 but not confirmed in other measurements. It is probably the same level as the 0+x level. I^π: from theoretical predictions in ⁹Be(³⁶S 2px).
762.05 8	(3/2 ⁻)		A E	J^{π} : from theoretical predictions in ${}^{208}\text{Pb}({}^{40}\text{Ar},X\gamma)$.

Continued on next page (footnotes at end of table)

 $^{43}_{18}\mathrm{Ar}_{25}$ -2

Adopted Levels, Gammas (continued)

⁴³Ar Levels (continued)

E(level)	J^{π}	XREF	Comments
1381.74 7		A	
1441.48 10		Α	
1527.4+x 5	(11/2 ⁻)	E	J^{π} : assignment based on conclusion from 1999Ma89 that this is a negative parity state which is dominated by a configuration with the valence neutrons in the <i>fp</i> shell and new results from 2006Wi10.
1610 40	$(3/2^{-})$	В	$\beta_2 = 0.25 \ 3 \ (1999 Ma89)$
			β_2 is from assumed E2 excitation. J ^{π} : from syst (1999Ma89).
1740 50		D	E(level): this level may correspond to the 1794 level reported in 43 Cl β^- .
1793.80 10	$(3/2^+)$	Α	J^{π} : from shell-model prediction; allowed β^{-} decay from (1/2 ⁺).
1816.8 7	<, , ,	Α	
1859+x 2	(9/2 ⁻)	E	J^{π} : assignment based on strong $2^+ \otimes f_{7/2}$ component of the wave function for the state, similar to that in ⁴¹ Ar.
1944.96? 21		Α	
2344.4 8		Α	
2390.50 15		Α	
2520.38 13		A D	XREF: D(2550).
2798.8? 5		Α	
3374.8? 5		Α	
3395.8? <i>3</i>		Α	
3425.5? 5		Α	
3549.4? 7		A D	XREF: D(3560).
4247.06 17	$(3/2^+)$	Α	J^{π} : log <i>ft</i> =4.9 from (1/2 ⁺) parent; 4247.0 γ to 5/2 ⁽⁻⁾ .
4289.0? 5		Α	
4550.8? 4		Α	
4.74×10^3 10		D	
			γ ⁽⁴³ Ar)

E_i (level)	J_i^{π}	Eγ	Iγ	E_f	J_f^{π}
201.27?	$(7/2^{-})$	201.27 16		0	5/2(-)
762.05	$(3/2^{-})$	761.81 11	100	0	$5/2^{(-)}$
1381.74		619.56 10	36 <i>3</i>	762.05	$(3/2^{-})$
		1381.79 7	100 6	0	$5/2^{(-)}$
1441.48		679.24 10	100 7	762.05	$(3/2^{-})$
		1441.69 23	16 <i>3</i>	0	$5/2^{(-)}$
1527.4+x	$(11/2^{-})$	1527.4 5	100	0+x	$(7/2^{-})$
1793.80	$(3/2^+)$	352.13 14	2.3 3	1441.48	
		411.8 <i>3</i>	1.37 21	1381.74	
		1031.84 9	100.0 27	762.05	$(3/2^{-})$
		1793.5 6	3.03 19	0	$5/2^{(-)}$
1816.8		1816.5 [†] <i>3</i>	100	0	$5/2^{(-)}$
1859+x	$(9/2^{-})$	1859 2	100	0+x	$(7/2^{-})$
1944.96?		1944.96 [†] 21	100	0	$5/2^{(-)}$
2344.4		903 [†]		1441.48	
		2344 [†]		0	$5/2^{(-)}$
2390.50		948.96 17	33 <i>3</i>	1441.48	
		1008.82 24	13.3 25	1381.74	
		1628.1 [†] 6	13.5 27	762.05	$(3/2^{-})$
		2390.5 4	100 8	0	$5/2^{(-)}$
2520.38		726.58 8	100 5	1793.80	$(3/2^+)$

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

					γ ⁽⁴³ Ar) (continued)
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	${ m J}_f^\pi$
2520.38		1758.2 5	6.3 26	762.05	(3/2 ⁻)
2798.8?		2036.4 [†] 4	100	762.05	$(3/2^{-})$
3374.8?		1933.3 [†] 5	100	1441.48	
3395.8?		3395.8 [†] <i>3</i>	100	0	$5/2^{(-)}$
3425.5?		1631.8 [†] 5	100	1793.80	$(3/2^+)$
3549.4?		2108.0 [†] 7	100	1441.48	
4247.06	(3/2+)	2430.0 [†] 5 2452.7 6 2805.43 17 2865.7 4	42 5 39 5 83 9 24 4	1816.8 1793.80 1441.48 1381.74	(3/2+)
		4247.0 7	100 20	0	$5/2^{(-)}$
4289.0?		2344.0 [†] 4	100	1944.96?	
4550.8?		3109.3 [†] 4	100	1441.48	

 † Placement of transition in the level scheme is uncertain.

4