Adopted Levels

History

Type Author Citation Literature Cutoff Date
Full Evaluation Balraj Singh and Jun Chen# NDS 126, 1 (2015) 31-Mar-2015

 $Q(\beta^{-})=24840 \text{ SY}; S(n)=960 \text{ SY}; S(p)=23340 \text{ CA}; Q(\alpha)=-21730 \text{ CA}$ 2012Wa38,1997Mo25

Estimated uncertainties: $\Delta Q(\beta^-) = \Delta S(n) = 920$ (2012Wa38).

 $S(2n)=2090\ 920,\ Q(\beta^-n)=23310\ 860\ (syst, 2012Wa38).\ S(2p)=53620\ (calculated, 1997Mo25).$

 $Q(\beta^{-})$ and S(n) from 2012Wa38; S(p) and $Q(\alpha)$ from 1997Mo25.

 $\%\beta^-=?; \%\beta^-n=?; \%\beta^-2n=?$

First possible identification of ⁴³Al nuclide by 2007Ba71.

2007Ba71: W(48 Ca,X γ) E=141 MeV/nucleon beam from the National Superconducting Cyclotron Laboratory (NSCL). The fragments were separated with the A1900 fragment separator. Isotopic identification by multiple ΔE signals, magnetic rigidity, total energy and time-of-flight analysis. Detectors: plastic scintillators, parallel-plate avalanche counters (PPACs) and silicon PIN diodes. 2008Ad08: calculated production cross section for 181 Ta(48 Ca,X): 40 fb.

⁴³Al Levels

E(level) $T_{1/2}$

Comments

One event was assigned to 43 Al with a probability of 0.0024 that this event was due to possible contribution from the neighboring 42 Al.

E(level): the observed event is assumed to correspond to the g.s. of ⁴³Al.

 $T_{1/2}$: limiting value estimated from time-of-flight of \approx 170 ns (Fig. 3 in 2007Ba71) at NSCL facility. Actual half-life is expected to be much longer as suggested by 1.2 ms from calculations by 1997Mo25. J^{π} : $5/2^{+}$ (syst,1997Mo25).