$C(^{44}S,^{42}Si\gamma)$ **2012Ta20** | History | | | | | | | | | |-----------------|--|-------------------|------------------------|--|--|--|--|--| | Type | Author | Citation | Literature Cutoff Date | | | | | | | Full Evaluation | Jun Chen [#] and Balraj Singh | NDS 135, 1 (2016) | 31-May-2016 | | | | | | Two-proton removal reaction. 2012Ta20: E=385 MeV/nucleon ⁴⁸Ca primary beam with an average intensity of 70 pnA was produced at the RIBF facility at RIKEN and incident on a 15-mm-thick rotating beryllium target. A secondary ⁴⁴S beam was analyzed by the BigRIPS fragment separator and accelerated to an energy of 210 MeV/nucleon with an intensity of 4×10^4 pps. The secondary target was a 2.54 g/cm² carbon foil. Reaction products were analyzed by the ZeroDegree spectrometer and identified using the energy loss (ionization chamber), magnetic rigidity and time-of-flight (plastic scintillators); γ rays were detected by the DALI2 array of 186 NaI(Tl) detectors surrounding the reaction target (20% efficiency, FWHM=10% at E γ =1 MeV). Measured E γ , I γ , particle- γ -coin. Deduced levels, J^{π} , rapid deformation development of Si isotopes. Comparison with shell-model calculations. Additional information 1. Total cross section for ⁴²Si=0.12 mb 2 for E=210 MeV/nucleon. ## ⁴²Si Levels | E(level) [†] | $J^{\pi \ddagger}$ | Comments | | | |-----------------------|----------------------------------|--|--|--| | 0 | 0 ⁺
2 ⁺ | | | | | 742 8 | | | | | | 2173? 14 | (4+) | E(level): this level is tentatively assigned by 2012Ta20 based on $\gamma\gamma$ -coin as the first 4 ⁺ state predicted by shell-model calculations. The resulting energy ratio between the first 4 ⁺ and 2 ⁺ states (R _{4/2})=2.93 5 is close to the rigid-rotor limit, which contradicts the possibility of a doubly closed structure suggested by the two magic numbers Z=14 and N=28 but supports enhanced quadrupole collectivity. Furthermore, large R _{4/2} value indicates a significant static ground state deformation of ⁴² Si (2012Ta20). | | | | 27749 12 | | | | | 2774? 12 ## $\gamma(^{42}Si)$ | E_{γ} | E_i (level) | \mathbf{J}_i^{π} | \mathbf{E}_f | \mathbf{J}_f^{π} | Comments | |---------------------------------|---------------|----------------------|----------------|----------------------|--| | 742 8 | 742 | 2+ | 0 | 0+ | | | 1431 <i>11</i> | 2173? | (4+) | 742 | 2+ | E_{γ} : placement of this γ -ray is based on $\gamma\gamma$ -coin with the 742 γ -ray. Also yield of this γ -ray is consistent with 100% feeding of the (2 ⁺) state. | | 2032 [†] 9
x2357 15 | 2774? | | 742 | 2+ | E_{γ} : possible partial feeding of the 2 ⁺ state at 742 keV (2012Ta20). | [†] Placement of transition in the level scheme is uncertain. [†] From Eγ. [‡] Predicted by shell-model calculations. $^{^{}x}$ γ ray not placed in level scheme. ## $C(^{44}S,^{42}Si\gamma)$ 2012Ta20 Legend Level Scheme ---- γ Decay (Uncertain)