$C(^{44}S,^{42}Si\gamma)$ **2012Ta20**

History								
Type	Author	Citation	Literature Cutoff Date					
Full Evaluation	Jun Chen [#] and Balraj Singh	NDS 135, 1 (2016)	31-May-2016					

Two-proton removal reaction.

2012Ta20: E=385 MeV/nucleon ⁴⁸Ca primary beam with an average intensity of 70 pnA was produced at the RIBF facility at RIKEN and incident on a 15-mm-thick rotating beryllium target. A secondary ⁴⁴S beam was analyzed by the BigRIPS fragment separator and accelerated to an energy of 210 MeV/nucleon with an intensity of 4×10^4 pps. The secondary target was a 2.54 g/cm² carbon foil. Reaction products were analyzed by the ZeroDegree spectrometer and identified using the energy loss (ionization chamber), magnetic rigidity and time-of-flight (plastic scintillators); γ rays were detected by the DALI2 array of 186 NaI(Tl) detectors surrounding the reaction target (20% efficiency, FWHM=10% at E γ =1 MeV). Measured E γ , I γ , particle- γ -coin. Deduced levels, J^{π} , rapid deformation development of Si isotopes. Comparison with shell-model calculations.

Additional information 1.

Total cross section for ⁴²Si=0.12 mb 2 for E=210 MeV/nucleon.

⁴²Si Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments		
0	0 ⁺ 2 ⁺			
742 8				
2173? 14	(4+)	E(level): this level is tentatively assigned by 2012Ta20 based on $\gamma\gamma$ -coin as the first 4 ⁺ state predicted by shell-model calculations. The resulting energy ratio between the first 4 ⁺ and 2 ⁺ states (R _{4/2})=2.93 5 is close to the rigid-rotor limit, which contradicts the possibility of a doubly closed structure suggested by the two magic numbers Z=14 and N=28 but supports enhanced quadrupole collectivity. Furthermore, large R _{4/2} value indicates a significant static ground state deformation of ⁴² Si (2012Ta20).		
27749 12				

2774? 12

$\gamma(^{42}Si)$

E_{γ}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Comments
742 8	742	2+	0	0+	
1431 <i>11</i>	2173?	(4+)	742	2+	E_{γ} : placement of this γ -ray is based on $\gamma\gamma$ -coin with the 742 γ -ray. Also yield of this γ -ray is consistent with 100% feeding of the (2 ⁺) state.
2032 [†] 9 x2357 15	2774?		742	2+	E_{γ} : possible partial feeding of the 2 ⁺ state at 742 keV (2012Ta20).

[†] Placement of transition in the level scheme is uncertain.

[†] From Eγ.

[‡] Predicted by shell-model calculations.

 $^{^{}x}$ γ ray not placed in level scheme.

$C(^{44}S,^{42}Si\gamma)$ 2012Ta20

Legend

Level Scheme

---- γ Decay (Uncertain)

