⁴⁰Ca(⁹⁶Zr,⁹⁴Zr) **2011Co14** History Type Author Citation Literature Cutoff Date Full Evaluation Jun Chen[#] and Balraj Singh NDS 135, 1 (2016) 31-May-2016 Two-neutron transfer channel in inverse kinematics. 2011Co14: E(⁹⁶Zr)=275-330 MeV from XTU-Tandem + ALPI at LNL, Legnaro. This energy is at or up to 25% below the Coulomb barrier, thus only the neutron transfer channels are relevant. Target=CaF₂, 50 μg/cm² strip supported on a 15 μg/cm² carbon backing. The Ca-like recoils were detected by PRISMA magnetic spectrometer. Mass identification was made from event-by-event reconstruction of the ion trajectory in the magnetic elements. Measured excitation functions. Deduced total kinetic energy loss (TKEL) distributions, differential cross sections and transfer probabilities. Comparison with semi-classical microscopic calculations. Additional information 1. ⁴²Ca Levels E(level) J^{π} Comments 0 0^{+} 5.76×10³ 0^{+} Transition to 5.76 MeV, 0⁺ state is much stronger than for g.s. The 5.76 MeV state is dominated by two neutrons in the $2p_{3/2}$ shell.