Adopted Levels

History

Type Author Citation Literature Cutoff Date
Full Evaluation Jun Chen[#] and Balraj Singh NDS 135, 1 (2016) 31-May-2016

 $Q(\beta^-)=24280 \text{ SY}; S(n)=1120 \text{ SY}; S(p)=24360 \text{ CA}; Q(\alpha)=-22760 \text{ CA}$ 2012Wa38,1997Mo25

Estimated uncertainties (syst,2012Wa38): $\Delta Q(\beta^-)=780$, $\Delta S(p)=1034$, $\Delta S(n)=840$.

S(p) and $Q(\alpha)$ from 1997Mo25; $Q(\beta^-)$ and S(n) from 2012Wa38. Theoretical S(n) = -2610 (1997Mo25) differs much from 1120 840 (syst,2012Wa38).

 $S(2n)=3280\ 780,\ Q(\beta^-n)=20650\ 700\ (syst, 2012Wa38).$ Theoretical $S(2p)=53610\ (1997Mo25).$

2007Ba71: $W(^{48}Ca,X\gamma)$ E=141 MeV/nucleon beam from the National Superconducting Cyclotron Laboratory (NSCL). The fragments were separated with the A1900 fragment separator. Isotopic identification by multiple ΔE signals, magnetic rigidity, total energy and time of flight analysis. Detectors: plastic scintillators, parallel-plate avalanche counters (PPACs) and silicon PIN diodes. In 2007Ba71, a total of 23 events were assigned to ^{42}Al , establishing particle stability of this nuclide.

⁴²Al Levels

E(level) $T_{1/2}$ Comments 0 > 170 ns $\%\beta^-=?; \%\beta^-n=?; \%\beta^-2n=?$

Theoretical $T_{1/2}=1.4$ ms, $\%\beta^- n=30.9$, $\%\beta^- 2n=33.0$ (2003Mo09).

Theoretical $T_{1/2}$ =8.3 ms, $\%\beta^-$ n=26.4, $\%\beta^-$ 2n=47.1 (2016Ma12).

E(level): the observed fragments are assumed to be in the g.s. of $^{42}\mathrm{Al}.$

 $T_{1/2}$: limiting value estimated from time-of-flight of ≈ 170 ns (figure 3 in 2007Ba71) at NSCL facility. Actual half-life is expected to be much longer as suggested by 1 ms from systematics (2012Au07) and 1.8 ms from calculations by 1997Mo25.