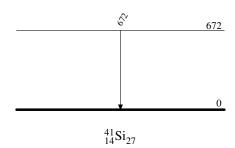
9 Be(42 P,X γ),(43 S,X γ),(44 S,X γ) 2011So22

History Author Literature Cutoff Date C. D. Nesaraja, E. A. Mccutchan NDS 133, 1 (2016)

Secondary beams of ^{42}P , ^{43}S and ^{44}S were produced through $^{12}C(^{48}Ca,X)$ and $^{181}Ta(^{48}Ca,X)$ reactions with $E(^{48}Ca)=60$ MeV/nucleon, selected using the SISSI device coupled to the α spectrometer, and identified through ΔE and time-of-flight measurements. ⁴¹Si was produced in the 1p, 2p and 2p1n reaction channels from ⁴²P, ⁴³S and ⁴⁴S secondary beams, respectively, on a Be target, selected using the SPEG spectrometer and identified through ΔE , time-of-flight and $B\rho$ measurements. Measured $E\gamma$, $I\gamma$ using the 4π Chateau de Crystal array consisting of 74 BaF2 scintillators. Production cross section for the 2p knockout from the 43 S secondary beam at 41.5 MeV/nucleon was determined to be 71 μ b 14.

⁴¹Si Levels

E(level)


0 672 14

 E_{γ} : given the observed width of the transition, it may be possible that it includes the decay of the triplet predicted by the shell model (2011So22).

Comments

9 Be(42 P,X γ),(43 S,X γ),(44 S,X γ)

Level Scheme

